示例#1
0
def save_params(out_path, params, evalcnt):
    confhandler = ConfigFileHandler()
    
    if os.path.exists(out_path):
        confhandler.load_configuration(out_path)
    
    section_name = 'evaluation_' + str(evalcnt)
    confhandler.new_section(section_name)
    
    for key, value in params.iteritems():
        confhandler.set_field(section_name, key, str(value))
     
    confhandler.save_configuration(out_path)
示例#2
0
    def punzi_target(WP_VBF2j, WP_VBF1j, WP_WHh, WP_ZHh):
        global evalcnt

        bin_dir = "/home/llr/cms/wind/cmssw/CMSSW_9_4_2/bin/slc6_amd64_gcc630/"
        cost_function_evaluator = "run_WP_evaluator"

        output = check_output([
            bin_dir + cost_function_evaluator, ref_dir, out_dir,
            str(lumi),
            str(WP_VBF2j),
            str(WP_VBF1j),
            str(WP_WHh),
            str(WP_ZHh)
        ])

        costval = 0.0

        for line in output.split('\n'):
            if "cost = " in line:
                costval = float(line.replace("cost = ", ""))
                break

        if math.isnan(costval):
            costval = -8.75

        # save the sampled point such that later they can be used as exploration points (if the need occurs)
        confhandler = ConfigFileHandler()
        evaluations_path = out_dir + 'evaluations.txt'

        if os.path.exists(evaluations_path):
            confhandler.load_configuration(evaluations_path)

        print "saving evaluation for iteration " + str(evalcnt)

        section_name = 'evaluation_' + str(evalcnt)
        confhandler.new_section(section_name)
        confhandler.set_field(section_name, 'cost', str(costval))
        confhandler.set_field(section_name, 'WP_VBF2j', str(WP_VBF2j))
        confhandler.set_field(section_name, 'WP_VBF1j', str(WP_VBF1j))
        confhandler.set_field(section_name, 'WP_WHh', str(WP_WHh))
        confhandler.set_field(section_name, 'WP_ZHh', str(WP_ZHh))

        confhandler.save_configuration(evaluations_path)

        evalcnt += 1

        return costval
示例#3
0
def save_priors(out_path, priors):
    # combine all the results into the final prior and save it again
    confhandler = ConfigFileHandler()
    confhandler.config.optionxform = str
    confhandler.new_section('Priors')
    confhandler.set_field('Priors', 'VBF_prior', str(1.0))
    confhandler.set_field('Priors', 'ggH_prior', str(priors["ggh_prior"]))
    confhandler.set_field('Priors', 'ttHlept_prior', str(priors["tthlept_prior"]))
    confhandler.set_field('Priors', 'ttHhadr_prior', str(priors["tthhadr_prior"]))
    confhandler.set_field('Priors', 'ZHlept_prior', str(priors["zhlept_prior"]))
    confhandler.set_field('Priors', 'WHlept_prior', str(priors["whlept_prior"]))
    confhandler.set_field('Priors', 'ZHhadr_prior', str(priors["zhhadr_prior"]))
    confhandler.set_field('Priors', 'WHhadr_prior', str(priors["whhadr_prior"]))
    confhandler.set_field('Priors', 'ZHMET_prior', str(priors["zhmet_prior"]))    
    confhandler.set_field('Priors', "ZX_prior", str(priors["bkg_prior"]))
    confhandler.set_field('Priors', "qq_prior", str(priors["qq_prior"]))
    confhandler.save_configuration(out_path)
示例#4
0
def run_bayesian_optimization(name, eval_file, target, var_ranges, init_points, max_iterations, patience, alpha):
    global evalcnt
    evalcnt = 0
    
    print "now optimizing the following variables: " + str(var_ranges)
    print "alpha = " + str(alpha)

    # change the kernel to have a length scale more appropriate to this function
    # alpha ... corresponds to the value added to the diagonal elements of the covariance matrix <-> the approximate noise level in the observations
    gp_params = {'kernel': ConstantKernel(1.0, (1e-8, 1e2)) * Matern(length_scale = 0.01, length_scale_bounds = (1e-5, 1e5), nu = 1.5),
                 'alpha': alpha}

    bo = BayesianOptimization(target, var_ranges)
    
    # check if a file with previous evaluations of this utility function already exists, if so, use it for initialization
    evaluations_path = os.path.join(out_dir, eval_file)
    
    if os.path.exists(evaluations_path):
        confhandler = ConfigFileHandler()
        confhandler.load_configuration(evaluations_path)
        
        init_dict = {}
        
        for section_name in confhandler.get_sections():
            cur_section = confhandler.get_section(section_name)
            
            for key, value in cur_section.iteritems():
                # only take those variables that are actually relevant
                if key in var_ranges or key == "target":
                    if key not in init_dict:
                        init_dict[key] = []
                    
                    init_dict[key].append(float(value))
                
        evalcnt = int(re.sub('evaluation_', '', confhandler.get_sections()[-1])) + 1
        print "resuming " + name + " at evaluation " + str(evalcnt)
        
        init_points_loaded = len(init_dict["target"])
        print "found " + str(init_points_loaded) + " initialization points: " + str(init_dict)
        
        bo.initialize(init_dict)
        bo.maximize(init_points = max(0, init_points - init_points_loaded), n_iter = 0, acq = 'poi', kappa = 3, xi = xi_scheduler(0.0, max_iterations), **gp_params)
        print "initialization done"
    else:
        bo.maximize(init_points = init_points, n_iter = 0, acq = 'poi', kappa = 3, xi = xi_scheduler(0.0, max_iterations), **gp_params)
    
    cur_iteration = 1
    patience_cnt = 0
    best_cost = -7.0
    
    for it in range(max_iterations): 
        cur_xi = xi_scheduler(cur_iteration, max_iterations)
        print "cur_iteration = " + str(cur_iteration) + ", using xi = " + str(cur_xi)

        cur_iteration += 1
        
        bo.maximize(init_points = 0, n_iter = 1, acq = 'poi', kappa = 3, xi = cur_xi, **gp_params)

        # evaluate the current maximum
        curval = bo.res['max']
        cost = curval['max_val']
        curparams = curval['max_params']
    
        confhandler = ConfigFileHandler()
        confhandler.config.optionxform = str
        confhandler.new_section(name)
        confhandler.set_field(name, 'target', str(cost))
        
        for key, val in curparams.iteritems():
            confhandler.set_field(name, key, str(val))
        
        confhandler.save_configuration(os.path.join(out_dir, name + '.txt'))
        
        # check if it is time to stop this optimization
        if(cost > best_cost):
            best_cost = cost
            patience_cnt = 0
            
        patience_cnt += 1
        
        if(patience_cnt > patience):
            break
            
    return curparams
示例#5
0
def main():
    def _compute_class_weights_lengths(gen, preprocessor, MC_weighting=False):
        # determine the actual size of the available dataset and adjust the sample weights correspondingly
        H1_data = gen.H1_collection.get_data(Config.branches, 0.0, 1.0)
        H0_data = gen.H0_collection.get_data(Config.branches, 0.0, 1.0)
        H1_length = len(preprocessor.process(H1_data).values()[0])
        H1_indices = preprocessor.get_last_indices()
        H0_length = len(preprocessor.process(H0_data).values()[0])
        H0_indices = preprocessor.get_last_indices()

        print "H1_length = " + str(H1_length)
        print "H0_length = " + str(H0_length)

        # if per-sample weighting is enabled, also set up the normalization of the event weights
        if MC_weighting:
            H1_weight_sum = np.sum(
                np.maximum(np.array(H1_data["training_weight"][H1_indices]),
                           0.0))
            H0_weight_sum = np.sum(
                np.maximum(np.array(H0_data["training_weight"][H0_indices]),
                           0.0))

            H1_class_weight = float(H0_length) / H1_weight_sum
            H0_class_weight = float(H1_length) / H0_weight_sum
        else:
            # H1_class_weight = 1.0
            # H0_class_weight = float(H1_length) / float(H0_length)
            H1_class_weight = 1.0 + float(H0_length) / float(H1_length)
            H0_class_weight = 1.0 + float(H1_length) / float(H0_length)

        return H1_class_weight, H0_class_weight, H1_length, H0_length

    # this computes low-level performance metrics for a model collection, i.e. the mean-quare error
    # computed on the validation dataset for each discriminant. Since the validation datasets will be held constant,
    # this is an easy way to directly compare different models

    setting_dir = sys.argv[1]
    training_dir = sys.argv[2]
    out_dir = sys.argv[3]

    # first, need to read in the trained ModelCollection:
    mconfhandler = ModelCollectionConfigFileHandler()
    mconfhandler.load_configuration(setting_dir + "settings.conf")
    mcolls = mconfhandler.GetModelCollection(weightpath=training_dir)

    confhandler = ConfigFileHandler()
    out_path = out_dir + "model_benchmark.txt"

    # for the evaluation, need to proceed in the same way as for training, but evaluate the models on the validation
    # data instead of training them on the training data

    for mcoll in mcolls:
        models, preprocessors, settings = mcoll.get_models(
        ), mcoll.get_preprocessors(), mcoll.get_settings()

        for cur_model, cur_preprocessor, cur_settings in zip(
                models, preprocessors, settings):
            val_gen = Generator(mcoll.H1_stream,
                                mcoll.H0_stream,
                                Config.branches,
                                preprocessor=cur_preprocessor,
                                chunks=1,
                                MC_weighting=False)
            val_gen.setup_validation_data()
            val_H1_classweight, val_H0_classweight, H1_length, H0_length = _compute_class_weights_lengths(
                val_gen, cur_preprocessor, False)
            print val_H1_classweight
            print val_H0_classweight
            print H1_length
            print H0_length
            val_gen.set_H1_weight(val_H1_classweight)
            val_gen.set_H0_weight(val_H0_classweight)
            val_gen.set_minimum_length(0)
            cur_model.get_keras_model().compile(optimizer=optimizers.Adam(),
                                                loss="mean_squared_error",
                                                metrics=["binary_accuracy"])
            res = cur_model.get_keras_model().evaluate_generator(
                val_gen.preprocessed_generator(), steps=1)
            print "statistics for model " + cur_model.name
            print res
            print cur_model.get_keras_model().metrics_names

            confhandler.new_section(cur_model.name)
            confhandler.set_field(cur_model.name, 'H0_val_length',
                                  str(H0_length))
            confhandler.set_field(cur_model.name, 'H1_val_length',
                                  str(H1_length))
            confhandler.set_field(cur_model.name, 'val_loss', str(res[0]))

    confhandler.save_configuration(out_path)
def main():
    # runs to check for (good) models (the first one passed is taken as reference run from which the available models
    # are taken - it is expected that all others runs also follow this structure):
    input_runs = []

    print "==================================================================="
    print "looking for models in the following runs:"

    for campaign_dir in sys.argv[1:-2]:
        for run_dir in next(os.walk(campaign_dir))[1]:
            if not "bin" in run_dir:
                run_path = os.path.join(campaign_dir, run_dir)
                print run_path
                input_runs.append(run_path)

    print "==================================================================="

    # output training campaign, this will consist of a combination of the models found in the campaigns listed above, in such a way that the overall performance is optimized
    output_run = os.path.join(sys.argv[-1], "optimized")

    # where the configuration file for the hyperparameter settings should be stored
    hyperparam_output = os.path.join(output_run, "../hyperparameters.conf")

    os.makedirs(output_run)

    # load the available model names
    reference_run = input_runs[0]
    available_mcolls = os.walk(os.path.join(reference_run,
                                            "training")).next()[1]

    mcolls_winning = []

    for mcoll in available_mcolls:
        models = os.walk(os.path.join(reference_run, "training",
                                      mcoll)).next()[1]

        # load a representative version of the current model collection...
        mconfhandler = ModelCollectionConfigFileHandler()
        mconfhandler.load_configuration(
            os.path.join(reference_run, "settings_training", mcoll,
                         "settings.conf"))
        mcoll_template = mconfhandler.GetModelCollection()[0]

        # ... but strip away all the actual model components
        mcoll_template.model_dict = {}
        mcoll_template.preprocessor_dict = {}
        mcoll_template.settings_dict = {}

        for model in models:
            # compare this model across the different runs
            losses = [get_loss(run, mcoll, model) for run in input_runs]

            winner = np.argmin(losses)

            winning_run = input_runs[winner]

            # copy the winning model into the output run
            shutil.copytree(
                os.path.join(winning_run, "training", mcoll, model),
                os.path.join(output_run, "training", mcoll, model))

            print "--------------------------------------------"
            print " take " + model + " from " + winning_run
            print "--------------------------------------------"

            # load the winning model to keep track of its settings
            mconfhandler = ModelCollectionConfigFileHandler()
            mconfhandler.load_configuration(
                os.path.join(winning_run, "settings_training", mcoll,
                             "settings.conf"))
            mcoll_winning = mconfhandler.GetModelCollection()[0]

            # then pull the winning model over into the template
            winning_model = mcoll_winning.model_dict[model]
            winning_preprocessor = mcoll_winning.preprocessor_dict[model]
            winning_settings = mcoll_winning.settings_dict[model]

            mcoll_template.add_model(winning_preprocessor, winning_model,
                                     winning_settings)

        mcolls_winning.append(mcoll_template)

    # now save the put-together config file also into the output run
    mconfhandler = ModelCollectionConfigFileHandler()
    mconfhandler.ToConfiguration(mcolls_winning)
    mconfhandler.save_configuration(os.path.join(output_run, "settings.conf"))

    # now distriute again the training settings, as usual:
    distribute_training_settings(output_run + '/')

    # now create the hyperparameter config file for each model, taken from the winners
    hp_confhandler = ConfigFileHandler()
    for mcoll in mcolls_winning:
        for model_name, model in mcoll.model_dict.iteritems():
            hp_confhandler.new_section(model_name)
            hp_confhandler.set_field(
                model_name, "hyperparameters",
                ConfigFileUtils.serialize_dict(model.hyperparameters,
                                               lambda x: str(x)))

    hp_confhandler.save_configuration(hyperparam_output)

    print "==================================================================="
    print "hyperparameter configuration file written to " + hyperparam_output
    print "==================================================================="
示例#7
0
    def punzi_target(ggH_prior, WHhadr_prior, ZHhadr_prior, WHlept_prior,
                     ZHlept_prior, ZHMET_prior, ttHhadr_prior, ttHlept_prior):
        global evalcnt

        bin_dir = "/home/llr/cms/wind/cmssw/CMSSW_9_4_2/bin/slc6_amd64_gcc630/"
        cost_function_evaluator = "run_prior_evaluator"

        output = check_output([
            bin_dir + cost_function_evaluator, run_dir, out_dir, engine,
            str(ggH_prior),
            str(WHhadr_prior),
            str(ZHhadr_prior),
            str(WHlept_prior),
            str(ZHlept_prior),
            str(ZHMET_prior),
            str(ttHhadr_prior),
            str(ttHlept_prior)
        ])

        costval = 0.0

        for line in output.split('\n'):
            if "cost = " in line:
                costval = float(line.replace("cost = ", ""))
                break

        if math.isnan(costval):
            costval = -8.75

        # add a regularization term that prefers default priors (i.e. close to 1.0)
        reg_term = 1.0 / 8.0 * (
            (ggH_prior - 1.0)**2.0 + (WHhadr_prior - 1.0)**2.0 +
            (ZHhadr_prior - 1.0)**2.0 + (WHlept_prior - 1.0)**2.0 +
            (ZHlept_prior - 1.0)**2.0 + (ZHMET_prior - 1.0)**2.0 +
            (ttHhadr_prior - 1.0)**2.0 + (ttHlept_prior - 1.0)**2.0)
        costval -= reg_term * lambda_reg

        # save the sampled point such that later they can be used as exploration points (if the need occurs)
        confhandler = ConfigFileHandler()
        evaluations_path = out_dir + 'evaluations.txt'

        if os.path.exists(evaluations_path):
            confhandler.load_configuration(evaluations_path)

        print "saving evaluation for iteration " + str(evalcnt)

        section_name = 'evaluation_' + str(evalcnt)
        confhandler.new_section(section_name)
        confhandler.set_field(section_name, 'cost', str(costval))
        confhandler.set_field(section_name, 'ggH_prior', str(ggH_prior))
        confhandler.set_field(section_name, 'WHhadr_prior', str(WHhadr_prior))
        confhandler.set_field(section_name, 'ZHhadr_prior', str(ZHhadr_prior))
        confhandler.set_field(section_name, 'WHlept_prior', str(WHlept_prior))
        confhandler.set_field(section_name, 'ZHlept_prior', str(ZHlept_prior))
        confhandler.set_field(section_name, 'ZHMET_prior', str(ZHMET_prior))
        confhandler.set_field(section_name, 'ttHhadr_prior',
                              str(ttHhadr_prior))
        confhandler.set_field(section_name, 'ttHlept_prior',
                              str(ttHlept_prior))

        confhandler.save_configuration(evaluations_path)

        evalcnt += 1

        return costval
示例#8
0
def main():
    global evalcnt

    if len(sys.argv) != 4:
        print "Error: exactly 3 arguments are required"

    run_dir = sys.argv[1]
    out_dir = sys.argv[2]
    engine = sys.argv[3]

    print run_dir
    print out_dir
    print engine

    # punzi_target_2d = lambda WHlept_prior, ZHlept_prior: punzi_target(ggH_prior_default, WHhadr_prior_default, ZHhadr_prior_default,
    #                                                                       WHlept_prior, ZHlept_prior, ZHMET_prior_default,
    #                                                                       ttHhadr_prior_default, ttHlept_prior_default)

    def punzi_target(ggH_prior, WHhadr_prior, ZHhadr_prior, WHlept_prior,
                     ZHlept_prior, ZHMET_prior, ttHhadr_prior, ttHlept_prior):
        global evalcnt

        bin_dir = "/home/llr/cms/wind/cmssw/CMSSW_9_4_2/bin/slc6_amd64_gcc630/"
        cost_function_evaluator = "run_prior_evaluator"

        output = check_output([
            bin_dir + cost_function_evaluator, run_dir, out_dir, engine,
            str(ggH_prior),
            str(WHhadr_prior),
            str(ZHhadr_prior),
            str(WHlept_prior),
            str(ZHlept_prior),
            str(ZHMET_prior),
            str(ttHhadr_prior),
            str(ttHlept_prior)
        ])

        costval = 0.0

        for line in output.split('\n'):
            if "cost = " in line:
                costval = float(line.replace("cost = ", ""))
                break

        if math.isnan(costval):
            costval = -8.75

        # add a regularization term that prefers default priors (i.e. close to 1.0)
        reg_term = 1.0 / 8.0 * (
            (ggH_prior - 1.0)**2.0 + (WHhadr_prior - 1.0)**2.0 +
            (ZHhadr_prior - 1.0)**2.0 + (WHlept_prior - 1.0)**2.0 +
            (ZHlept_prior - 1.0)**2.0 + (ZHMET_prior - 1.0)**2.0 +
            (ttHhadr_prior - 1.0)**2.0 + (ttHlept_prior - 1.0)**2.0)
        costval -= reg_term * lambda_reg

        # save the sampled point such that later they can be used as exploration points (if the need occurs)
        confhandler = ConfigFileHandler()
        evaluations_path = out_dir + 'evaluations.txt'

        if os.path.exists(evaluations_path):
            confhandler.load_configuration(evaluations_path)

        print "saving evaluation for iteration " + str(evalcnt)

        section_name = 'evaluation_' + str(evalcnt)
        confhandler.new_section(section_name)
        confhandler.set_field(section_name, 'cost', str(costval))
        confhandler.set_field(section_name, 'ggH_prior', str(ggH_prior))
        confhandler.set_field(section_name, 'WHhadr_prior', str(WHhadr_prior))
        confhandler.set_field(section_name, 'ZHhadr_prior', str(ZHhadr_prior))
        confhandler.set_field(section_name, 'WHlept_prior', str(WHlept_prior))
        confhandler.set_field(section_name, 'ZHlept_prior', str(ZHlept_prior))
        confhandler.set_field(section_name, 'ZHMET_prior', str(ZHMET_prior))
        confhandler.set_field(section_name, 'ttHhadr_prior',
                              str(ttHhadr_prior))
        confhandler.set_field(section_name, 'ttHlept_prior',
                              str(ttHlept_prior))

        confhandler.save_configuration(evaluations_path)

        evalcnt += 1

        return costval

    eps = 1e-1
    delta = 0.2
    bo = BayesianOptimization(
        punzi_target, {
            'ggH_prior': (1.0 - delta, 1.0 + delta),
            'WHhadr_prior': (eps, 1.0),
            'ZHhadr_prior': (eps, 1.0),
            'WHlept_prior': (eps, 1.0),
            'ZHlept_prior': (eps, 1.0),
            'ZHMET_prior': (eps, 1.0),
            'ttHhadr_prior': (eps, 1.0),
            'ttHlept_prior': (eps, 1.0)
        })

    # bo = BayesianOptimization(punzi_target_2d, {'WHlept_prior': (eps, WHlept_prior_default + delta),
    #                                                  'ZHlept_prior': (eps, ZHlept_prior_default + delta)})

    # check if a file with previously evaluated points exists, if so, use them for initialization
    confhandler = ConfigFileHandler()
    evaluations_path = out_dir + 'evaluations.txt'

    if os.path.exists(evaluations_path):
        confhandler.load_configuration(evaluations_path)

        ggH_priors_init = []
        WHhadr_priors_init = []
        ZHhadr_priors_init = []
        WHlept_priors_init = []
        ZHlept_priors_init = []
        ZHMET_priors_init = []
        ttHhadr_priors_init = []
        ttHlept_priors_init = []
        targets_init = []

        for section_name in confhandler.get_sections():
            cur_section = confhandler.get_section(section_name)

            targets_init.append(float(cur_section['cost']))
            ggH_priors_init.append(float(cur_section['ggH_prior']))
            WHhadr_priors_init.append(float(cur_section['WHhadr_prior']))
            ZHhadr_priors_init.append(float(cur_section['ZHhadr_prior']))
            WHlept_priors_init.append(float(cur_section['WHlept_prior']))
            ZHlept_priors_init.append(float(cur_section['ZHlept_prior']))
            ZHMET_priors_init.append(float(cur_section['ZHMET_prior']))
            ttHhadr_priors_init.append(float(cur_section['ttHhadr_prior']))
            ttHlept_priors_init.append(float(cur_section['ttHlept_prior']))

        init_dict = {
            'target': targets_init,
            'ggH_prior': ggH_priors_init,
            'WHhadr_prior': WHhadr_priors_init,
            'ZHhadr_prior': ZHhadr_priors_init,
            'WHlept_prior': WHlept_priors_init,
            'ZHlept_prior': ZHlept_priors_init,
            'ZHMET_prior': ZHMET_priors_init,
            'ttHhadr_prior': ttHhadr_priors_init,
            'ttHlept_prior': ttHlept_priors_init
        }

        evalcnt = int(re.sub('evaluation_', '',
                             confhandler.get_sections()[-1])) + 1

        print "resuming at evaluation " + str(evalcnt)

        bo.initialize(init_dict)
        initialized = True
    else:
        initialized = False

    # change the kernel to have a length scale more appropriate to this function
    # alpha ... corresponds to the value added to the diagonal elements of the covariance matrix <-> the approximate noise level in the observations
    gp_params = {
        'kernel':
        1.0 *
        Matern(length_scale=0.05, length_scale_bounds=(1e-5, 1e5), nu=1.5),
        'alpha':
        1e-1
    }

    # perform the standard initialization and setup
    if initialized:
        bo.maximize(init_points=0,
                    n_iter=0,
                    acq='poi',
                    kappa=3,
                    xi=xi_scheduler(0.0),
                    **gp_params)
    else:
        bo.maximize(init_points=6,
                    n_iter=0,
                    acq='poi',
                    kappa=3,
                    xi=xi_scheduler(0.0),
                    **gp_params)

    cur_iteration = 1
    for it in range(1000):
        cur_iteration += 1

        cur_xi = xi_scheduler(cur_iteration)
        print "using xi = " + str(cur_xi)

        bo.maximize(init_points=6,
                    n_iter=1,
                    acq='poi',
                    kappa=3,
                    xi=cur_xi,
                    **gp_params)

        # evaluate the current maximum
        curval = bo.res['max']
        cost = curval['max_val']
        priors = curval['max_params']

        confhandler = ConfigFileHandler()
        confhandler.config.optionxform = str
        confhandler.new_section('Priors')
        confhandler.set_field('Priors', 'cost', str(cost))
        confhandler.set_field('Priors', 'VBF_prior', str(1.0))

        for key, val in priors.iteritems():
            confhandler.set_field('Priors', key, str(val))

        confhandler.save_configuration(out_dir + 'priors.txt')
示例#9
0
def main():
    global evalcnt

    if len(sys.argv) != 4:
        print "Error: exactly 3 arguments are required"

    ref_dir = sys.argv[1]
    out_dir = sys.argv[2]
    lumi = float(sys.argv[3])

    print ref_dir
    print out_dir
    print lumi

    def punzi_target(WP_VBF2j, WP_VBF1j, WP_WHh, WP_ZHh):
        global evalcnt

        bin_dir = "/home/llr/cms/wind/cmssw/CMSSW_9_4_2/bin/slc6_amd64_gcc630/"
        cost_function_evaluator = "run_WP_evaluator"

        output = check_output([
            bin_dir + cost_function_evaluator, ref_dir, out_dir,
            str(lumi),
            str(WP_VBF2j),
            str(WP_VBF1j),
            str(WP_WHh),
            str(WP_ZHh)
        ])

        costval = 0.0

        for line in output.split('\n'):
            if "cost = " in line:
                costval = float(line.replace("cost = ", ""))
                break

        if math.isnan(costval):
            costval = -8.75

        # save the sampled point such that later they can be used as exploration points (if the need occurs)
        confhandler = ConfigFileHandler()
        evaluations_path = out_dir + 'evaluations.txt'

        if os.path.exists(evaluations_path):
            confhandler.load_configuration(evaluations_path)

        print "saving evaluation for iteration " + str(evalcnt)

        section_name = 'evaluation_' + str(evalcnt)
        confhandler.new_section(section_name)
        confhandler.set_field(section_name, 'cost', str(costval))
        confhandler.set_field(section_name, 'WP_VBF2j', str(WP_VBF2j))
        confhandler.set_field(section_name, 'WP_VBF1j', str(WP_VBF1j))
        confhandler.set_field(section_name, 'WP_WHh', str(WP_WHh))
        confhandler.set_field(section_name, 'WP_ZHh', str(WP_ZHh))

        confhandler.save_configuration(evaluations_path)

        evalcnt += 1

        return costval

    eps = 1e-3
    delta = 0.2
    bo = BayesianOptimization(
        punzi_target, {
            'WP_VBF2j': (eps, 1.0 - eps),
            'WP_VBF1j': (eps, 1.0 - eps),
            'WP_WHh': (eps, 1.0 - eps),
            'WP_ZHh': (eps, 1.0 - eps)
        })

    # check if a file with previously evaluated points exists, if so, use them for initialization
    confhandler = ConfigFileHandler()
    evaluations_path = out_dir + 'evaluations.txt'

    if os.path.exists(evaluations_path):
        confhandler.load_configuration(evaluations_path)

        targets_init = []
        WP_VBF2j_init = []
        WP_VBF1j_init = []
        WP_WHh_init = []
        WP_ZHh_init = []

        for section_name in confhandler.get_sections():
            cur_section = confhandler.get_section(section_name)

            targets_init.append(float(cur_section['cost']))
            WP_VBF2j_init.append(float(cur_section['WP_VBF2j']))
            WP_VBF1j_init.append(float(cur_section['WP_VBF1j']))
            WP_WHh_init.append(float(cur_section['WP_WHh']))
            WP_ZHh_init.append(float(cur_section['WP_ZHh']))

        init_dict = {
            'target': targets_init,
            'WP_VBF2j': WP_VBF2j_init,
            'WP_VBF1j': WP_VBF1j_init,
            'WP_WHh': WP_WHh_init,
            'WP_ZHh': WP_ZHh_init
        }

        evalcnt = int(re.sub('evaluation_', '',
                             confhandler.get_sections()[-1])) + 1

        print "resuming at evaluation " + str(evalcnt)

        bo.initialize(init_dict)
        initialized = True
    else:
        initialized = False

    # change the kernel to have a length scale more appropriate to this function
    gp_params = {
        'kernel':
        1.0 *
        Matern(length_scale=0.05, length_scale_bounds=(1e-5, 1e5), nu=1.5),
        'alpha':
        1e-5
    }

    # perform the standard initialization and setup
    if initialized:
        bo.maximize(init_points=0,
                    n_iter=0,
                    acq='poi',
                    kappa=3,
                    xi=xi_scheduler(0.0),
                    **gp_params)
    else:
        bo.maximize(init_points=6,
                    n_iter=0,
                    acq='poi',
                    kappa=3,
                    xi=xi_scheduler(0.0),
                    **gp_params)

    cur_iteration = 1
    for it in range(1000):
        cur_xi = xi_scheduler(cur_iteration)
        cur_iteration += 1
        print "using xi = " + str(cur_xi)

        bo.maximize(init_points=6,
                    n_iter=1,
                    acq='poi',
                    kappa=3,
                    xi=cur_xi,
                    **gp_params)

        # evaluate the current maximum
        curval = bo.res['max']
        cost = curval['max_val']
        WPs = curval['max_params']

        confhandler = ConfigFileHandler()
        confhandler.config.optionxform = str
        confhandler.new_section('WPs')
        confhandler.set_field('WPs', 'cost', str(cost))

        for key, val in WPs.iteritems():
            confhandler.set_field('WPs', key, str(val))

        confhandler.save_configuration(out_dir + 'WPs.txt')