def train(type='ALL_CORPS', start_no=1):
    """하나의 세션으로 학습시키는 기본 모델 """
    corps = get_corps()

    params = TrainParams(type)
    invests = LearningNMockInvestment(params)
    invests.let_train_invests(corps, start_no)
def recommend_corps(recommend_month: str, train_model: str = 'rnn') -> None:
    """하나의 세션으로 학습시키는 기본 모델 """

    month = DateUtils.to_date(recommend_month, '%Y.%m')
    params = GlobalParams(train_model=train_model)
    #params.remove_session_file = True
    before_month_start = DateUtils.to_month_str(month,
                                                -params.mock_period_months)
    before_month_end = DateUtils.to_month_str(month, -1)
    params.invest_start_date = before_month_start + '.01'
    params.invest_end_date = DateUtils.to_date_str(month -
                                                   datetime.timedelta(days=1))
    params.result_file_name = "MOCK_" + before_month_start + "-" + before_month_end
    corp = Corp(params)
    corps = corp.get_eval_corps_auto(params.invest_end_date)
    invests = LearningNMockInvestment(params)
    invests.train_n_invests(corps)
    before_result = pd.read_csv(invests.get_result_file_path())

    if params.rmse_max_recommend is not None:
        before_result = before_result.query("rmse<" +
                                            str(params.rmse_max_recommend))
    before_result = before_result.sort_values(by='invest_result',
                                              ascending=False)
    before_result.index = range(len(before_result.index))
    save_file_name = "recommend_months_" + recommend_month + ".xlsx"
    save_file_path = os.path.join('result', train_model, save_file_name)
    DataUtils.save_csv(before_result, save_file_path)
    print(before_result)
def train_codes(corp_codes, train_model='rnn'):
    """하나의 세션으로 학습시키는 기본 모델 """
    corp = Corp(type)
    corps = corp.get_corps_for_codes(corp_codes)

    params = GlobalParams(train_model=train_model)
    invests = LearningNMockInvestment(params)
    invests.train_n_invests(corps)
def train_one(corp_name='카카오', train_model='rnn'):
    """하나의 세션으로 학습시키는 기본 모델 """
    corp = Corp(type)
    corps = corp.get_corp(corp_name)

    params = GlobalParams(train_model=train_model)
    invests = LearningNMockInvestment(params)
    invests.train_n_invests(corps)
def twins(start_no=1):
    corp = Corp()
    corps = corp.get_eval_corps()

    params = TrainParams("EACH")
    params.result_file_name = 'twins_result'

    invests = LearningNMockInvestment(params)
    invests.let_train_invests_twins(corps, start_no)
def train_all_corps(type='ALL_CORPS', start_no=1):
    """하나의 세션으로 모든 회사를 학습시킨다.  """
    corp = Corp()
    corps = corp.get_corps()

    params = TrainParams(type)
    params.result_file_name = "training_" + type.lower() + "_result"
    invests = LearningNMockInvestment(params)
    invests.let_train_invests(corps, start_no)
def train(type: str = 'EACH',
          start_no: int = 1,
          train_model: str = 'rnn',
          invest_only: bool = False) -> None:
    """하나의 세션으로 학습시키는 기본 모델 """
    corps = get_corps(type)

    params = GlobalParams(type, train_model=train_model)
    invests = LearningNMockInvestment(params)
    invests.train_n_invests(corps, start_no, invest_only)
示例#8
0
def main(corp_names: list = None,
         train_model: str = 'rnn',
         invest_only: bool = False) -> None:
    if corp_names is None:
        corp_names = ["에이치엘비", "동일철강", "키다리스튜디오"]

    params = GlobalParams('FORCAST', train_model=train_model)

    invests = LearningNMockInvestment(params)
    invests.train_n_invests_for_name(corp_names, invest_only)
def main(corp_names=None):

    if corp_names is None:
        corp_names = [
            "삼성중공업", "기아자동차", "게임빌", "루트로닉", "영진약품", "대아티아이", "한국타이어"
        ]
        #corp_names = ["JYP Ent.", "KTH"]

    params = TrainParams('FORCAST')

    invests = LearningNMockInvestment(params)
    invests.let_train_invests_for_name(corp_names)
示例#10
0
 def train_n_invests_top10(self, corps):
     """ 상위 10개를 사는 방법으로 모의투자를 실행한다. """
     learning_invest = LearningNMockInvestment(self.params)
     invest_count = self.params.invest_count
     invest_data = []
     for i in range(invest_count):
         j = 0
         for index, corp_data in corps.iterrows():
             if i == 0:
                 invest_row = self.train_top10(i, j, corp_data)
                 invest_data.append(invest_row)
             else:
                 invest_row = invest_data[j]
                 self.train_top10(i, j, corp_data, invest_row)
             #print(i, j, invest_row)
             j += 1
         self.invest_top10(i, invest_data)
         print(invest_data)
     self.sell_all_stock(invest_data)
     print("final", invest_data)
     df_invest_data = pd.DataFrame(invest_data, columns=self.RESULT_COLUMNS)
     DataUtils.save_excel(df_invest_data,
                          learning_invest.get_result_file_path())
示例#11
0
    def train_top10(self, i, j, corp_data, invest_row=None):
        """ top10 모의투자 방법을 위하여 학습을 시킨다."""
        learning_invest = LearningNMockInvestment(self.params)
        invest = MockInvestment(self.params)

        invest_count = self.params.invest_count
        if invest_row is None:
            corp_code = corp_data['종목코드']
        else:
            corp_code = invest_row[1]
        stocks = Stocks(self.params)
        stock_data = stocks.get_stock_data(corp_code)
        stock_data_now = stock_data[:i - invest_count]
        rmse_val, train_cnt, data_params, dataX_last, scaler_close = learning_invest.train(
            corp_code, stock_data_now)

        last_money, last_predict, invest_predicts, all_invest_money = invest.invest(
            corp_code, dataX_last, data_params)
        last_close_money, last_pred_money = invest.get_real_money(
            data_params, scaler_close, last_predict)
        last_pred_ratio = (last_pred_money -
                           last_close_money) / last_close_money * 100

        if invest_row is None:
            corp_name = corp_data['회사명']
            all_invest_money, all_stock_count = invest.buy_stock(
                self.params.invest_money, last_close_money, 0)
            invest_row = [
                j, corp_code, corp_name, last_pred_ratio, last_close_money, 0,
                0, all_invest_money, all_stock_count, rmse_val
            ]
        else:
            #print(invest_row)
            invest_row[3] = last_pred_ratio
            invest_row[4] = last_close_money
        return invest_row
def train_months(start: str = '2018.01',
                 end: str = '2018.09',
                 invest_money: float = 100000000,
                 train_model: str = 'rnn') -> None:
    """하나의 세션으로 학습시키는 기본 모델 """
    start_month = DateUtils.to_date(start, '%Y.%m')
    end_month = DateUtils.to_date(end, '%Y.%m')
    between = DateUtils.between_months(start_month, end_month)
    invest_months_result = []
    result_columns = ["month", "invest_money", "result_money"]
    MOCK_MONEY = 10000000
    chart_data = []
    params = None
    index_money = None
    for i in range(between + 1):

        params = GlobalParams(train_model=train_model)
        #params.remove_session_file = True
        before_month_start = DateUtils.to_month_str(
            start_month, i - params.mock_period_months)
        before_month_end = DateUtils.to_month_str(start_month, i - 1)
        params.invest_start_date = before_month_start + '.01'
        params.invest_end_date = before_month_end + '.31'
        params.result_file_name = "MOCK_" + before_month_start + "-" + before_month_end
        params.invest_money = MOCK_MONEY
        corp = Corp(params)
        corps = corp.get_eval_corps_auto(params.invest_end_date)
        invests = LearningNMockInvestment(params)
        invests.train_n_invests(corps)
        before_result = pd.read_csv(invests.get_result_file_path())

        now_month = DateUtils.to_month_str(start_month, i)
        if params.rmse_max_recommend is not None:
            before_result = before_result.query("rmse<" +
                                                str(params.rmse_max_recommend))
        before_result = corp.exclude_corps(before_result, now_month)
        before_result = before_result.sort_values(by='invest_result',
                                                  ascending=False)
        before_result.index = range(len(before_result.index))
        corp10_codes = before_result.loc[:9, 'code']
        corp10_codes.index = range(len(corp10_codes.index))
        corp10 = corp.get_corps_for_codes(corp10_codes)
        corp10_len = len(corp10_codes.index)

        params = GlobalParams(train_model=train_model)
        #params.remove_session_file = False

        params.invest_start_date = now_month + '.01'
        params.invest_end_date = now_month + '.31'
        params.result_file_name = "INVEST_" + now_month
        params.invest_money = invest_money / corp10_len
        if index_money is not None:
            params.index_money = index_money / corp10_len
        invests = LearningNMockInvestment(params)
        invest_chart_data = invests.train_n_invests(corp10, invest_only=False)
        chart_data.append(invest_chart_data)
        now_result = pd.read_csv(invests.get_result_file_path())
        invest_money = now_result['invest_result'].sum()
        index_money = now_result['all_invest_result'].sum()
        invest_months_result.append(
            [now_month, params.invest_money * corp10_len, invest_money])
        print(now_month, params.invest_money * corp10_len, invest_money)

    df_imr = pd.DataFrame(invest_months_result, columns=result_columns)
    save_file_name = "recommend_months_" + start + "-" + end + ".xlsx"
    if "_" in train_model:
        save_file_path = os.path.join('result', train_model,
                                      params.ensemble_type, save_file_name)
    else:
        save_file_path = os.path.join('result', train_model, save_file_name)
    DataUtils.save_csv(df_imr, save_file_path)

    if len(chart_data) > 1 and params is not None:
        visualizer = InvestVisualizer(params)
        visualizer.draw_invest_months(chart_data, start, end)
        print()
示例#13
0
def forcasts(corps_n_date: list) -> None:
    params = GlobalParams('FORCAST')
    invests = LearningNMockInvestment(params)
    invests.forcasts(corps_n_date)