示例#1
0
    def __init__(self,
                 alpha=None,
                 retain_alpha_sign=True,
                 universe='top2000',
                 delay=1,
                 capital=1e6):
        if universe in stock_universes:
            self.universe = universe
            uni_file = database_dir + universe + '.adj_ammend.mat'
            uni_var = scipy.io.loadmat(uni_file)[universe].astype(float)
            uni_var[uni_var == 0.] = np.nan
            self._uni_mask = uni_var
        else:
            raise KeyError('stock universe does not exist')
        self.alpha = alpha
        self.retain_alpha_sign = retain_alpha_sign
        if not isinstance(delay, int) or delay < 0:
            raise ValueError('delay must be int and >=0')
        self.delay = delay
        self.capital = capital
        self._market_data = {}

        dates = Simulator._read_var('dates')
        dates = [time.strptime(str(idate), "[%Y%m%d]") for idate in dates]
        dates = [datetime.datetime(*idate[0:6]) for idate in dates]
        self.dates = dates

        open_p = Simulator._read_var('open', self._uni_mask)
        open_ret1 = open_p / trans.ts_delay(open_p, 1) - 1.0
        self._market_data['open_ret1'] = open_ret1

        close_p = Simulator._read_var('close', self._uni_mask)
        close_ret1 = close_p / trans.ts_delay(close_p, 1) - 1.0
        self._market_data['close_ret1'] = close_ret1

        vwap = Simulator._read_var('vwap', self._uni_mask)
        vwap_ret1 = vwap / trans.ts_delay(vwap, 1) - 1.0
        Simulator._clean_data('vwap_ret1', vwap_ret1)
        forward_vwap_ret1 = trans.ts_delay(vwap_ret1, -1 - self.delay)
        self._market_data['vwap_ret1'] = vwap_ret1
        self._market_data['forward_vwap_ret1'] = forward_vwap_ret1
        return
示例#2
0
 def momen_smooth_inner(mysim):
     momen_signal = np.sign(
         trans.ts_delay(trans.ts_mean(mysim('ret1'), window_width),
                        window_width))
     ret1_shock = np.zeros_like(mysim('ret1'))
     ret1_shock[mysim('ret1') > threshold] = 1
     ret1_shock[mysim('ret1') < -threshold] = -1
     pshock, nshock = stats_util.time_to_lastshock(ret1_shock)
     shock_index = np.logical_or(pshock < 60, nshock < 60)
     momen_signal[np.logical_and(momen_signal > 0, ~shock_index)] = np.nan
     momen_signal[np.logical_and(momen_signal < 0, shock_index)] = np.nan
     return momen_signal
示例#3
0
 def momen_longterm_inner(mysim):
     ave_past_ret = trans.ts_mean(
         mysim('ret1'), lookback_period[1] - lookback_period[0] + 1)
     ret1_shock = np.zeros_like(mysim('ret1'))
     ret1_shock[mysim('ret1') > threshold] = 1
     ret1_shock[mysim('ret1') < -threshold] = -1
     pshock, nshock = stats_util.time_to_lastshock(ret1_shock)
     shock_index = np.logical_or(pshock <= shock_effect_length,
                                 nshock <= shock_effect_length)
     ave_past_ret[shock_index] = np.nan
     ave_past_ret = trans.ts_delay(ave_past_ret, -lookback_period[1])
     alpha = trans.ts_make_squarewave(ave_past_ret, hold_length)
     return alpha
示例#4
0
def series_to_nfeatures(data2d, num_features, additional_feature=None):
    """from time series `data2d` select past `num_features` times to be used as 
    features. For example, time series [0, 1, 3, 5] and num_features = 2 becomes
       [[nan, 0],
        [0, 1],
        [1, 3],
        [3, 5]]
    treat all the stocks as the same
    """
    from trans import ts_delay
    num_stocks = data2d.shape[0]
    num_times  = data2d.shape[1]
    if additional_feature is None:
        feature_vec = np.zeros((num_times*num_stocks, num_features))
    else:
        feature_vec = np.zeros((num_times*num_stocks, num_features+1))
    for i in range(0, num_features):
        feature_vec[:,i] = ts_delay(data2d, i).flatten()
    if additional_feature is not None:
        feature_vec[:,num_features] = np.tile(additional_feature, (1, num_stocks))
    return feature_vec
示例#5
0
 def momen_HF_inner(mysim):
     return trans.ts_delay(mysim(varname), delayed_days)
示例#6
0
 def momen_longterm_inner(mysim):
     ave_past_ret = trans.ts_mean(
         mysim('ret1'), lookback_period[1] - lookback_period[0] + 1)
     ave_past_ret = trans.ts_delay(ave_past_ret, -lookback_period[1])
     alpha = trans.ts_make_squarewave(ave_past_ret, hold_length)
     return alpha