def transMask2ActionMAML(state, sample=False):
    predict_path = "../../data/saves/maml_newdata2k_reptile_retriever_joint/"
    if sample:
        predict_path += "sample_final_maml_predict.actions"
    else:
        predict_path += "final_maml_predict.actions"
    with open("../../data/auto_QA_data/CSQA_ANNOTATIONS_test.json", 'r') as load_f, \
            open(predict_path, 'r') as predict_actions:
        linelist = list()
        load_dict = json.load(load_f)
        num = 0
        total_precision = 0
        total_recall = 0
        total_right_count = 0
        total_answer_count = 0
        total_response_count = 0
        bool_right_count = 0
        count_right_count = 0
        for x in predict_actions:
            action = x.strip().split(":")[1]
            id = x.strip().split(":")[0]

            if id.startswith(state):
                num += 1
                entity_mask = load_dict[id]["entity_mask"] \
                    if load_dict[id]["entity_mask"] is not None else {}
                relation_mask = load_dict[id]["relation_mask"] \
                    if load_dict[id]["relation_mask"] is not None else {}
                type_mask = load_dict[id]["type_mask"] \
                    if load_dict[id]["type_mask"] is not None else {}
                response_entities = load_dict[id]["response_entities"].strip() \
                    if load_dict[id]["response_entities"] is not None else ""
                response_entities = response_entities.strip().split("|")
                orig_response = load_dict[id]["orig_response"].strip() \
                    if load_dict[id]["orig_response"] is not None else ""
                # Update(add) elements in dict.
                entity_mask.update(relation_mask)
                entity_mask.update(type_mask)
                new_action = list()
                # Default separator of split() method is any whitespace.
                for act in action.split():
                    for k, v in entity_mask.items():
                        if act == v:
                            act = k
                            break
                    new_action.append(act)
                print("{0}".format(num))
                '''print("{0}: {1}->{2}".format(num, id, action))'''
                logging.info("%d: %s -> %s", num, id, action)
                symbolic_seq = list2dict(new_action)
                symbolic_exe = Symbolics(symbolic_seq)
                answer = symbolic_exe.executor()

                if state.startswith("QuantitativeReasoning(Count)(All)") \
                        or state.startswith("ComparativeReasoning(Count)(All)"):
                    '''print (symbolic_seq)
                    print ("%s::%s" %(answer, orig_response))'''
                    logging.info(symbolic_seq)
                    logging.info("answer:%s, orig_response:%s", answer,
                                 orig_response)

                    if orig_response.isdigit() and answer == int(
                            orig_response):
                        count_right_count += 1
                        '''print ("count_right_count+1")'''
                        logging.info("count_right_count+1")
                    else:
                        import re
                        orig_response = re.findall(r"\d+\.?\d*", orig_response)
                        orig_response = sum([int(i) for i in orig_response])
                        if answer == orig_response:
                            count_right_count += 1
                            '''print ("count_right_count+1")'''
                            logging.info("count_right_count+1")

                # For boolean, the returned answer is a list.
                if state.startswith("Verification(Boolean)(All)"):
                    # To judge the returned answers are in dict format or boolean format.
                    if type(answer) == dict:
                        temp = []
                        if '|BOOL_RESULT|' in answer:
                            temp.extend(answer['|BOOL_RESULT|'])
                            answer = temp
                            answer_string = transformBooleanToString(answer)
                            if answer_string != '' and answer_string == orig_response:
                                bool_right_count += 1
                                '''print("bool_right_count+1")'''
                                logging.info("bool_right_count+1")
                    else:
                        if answer:
                            answer = "YES"
                        if not answer:
                            answer = "NO"
                        if answer == orig_response:
                            bool_right_count += 1
                            '''print("bool_right_count+1")'''
                            logging.info("bool_right_count+1")

                # To judge the returned answers are in dict format or boolean format.
                if type(answer) == dict:
                    temp = []
                    if '|BOOL_RESULT|' in answer:
                        temp.extend(answer['|BOOL_RESULT|'])
                    else:
                        for key, value in answer.items():
                            if value:
                                temp.extend(list(value))
                    answer = temp

                elif type(answer) == type([]) or type(answer) == type(set([])):
                    answer = sorted((list(answer)))
                elif type(answer) == int:
                    answer = [answer]
                else:
                    answer = [answer]

                right_count = 0
                for e in response_entities:
                    if e in answer:
                        right_count += 1
                total_right_count += right_count
                total_answer_count += len(answer)
                total_response_count += len(response_entities)
                precision = right_count / float(
                    len(answer)) if len(answer) != 0 else 0
                total_precision += precision
                recall = (right_count / float(len(response_entities))
                          ) if len(response_entities) != 0 else 0
                total_recall += recall
                '''print("orig:", len(response_entities), "answer:", len(answer), "right:", right_count)
                print("Precision:", precision),
                print("Recall:", recall)
                print('===============================')'''
                logging.info("orig:%d, answer:%d, right:%d",
                             len(response_entities), len(answer), right_count)
                logging.info("Precision:%f", precision)
                logging.info("Recall:%f", recall)
                logging.info("============================")
            # print answer
        string_bool_right = "bool_right_count: %d" % bool_right_count
        string_count_right_count = "count_right_count: %d" % count_right_count
        string_total_num = "total_num::total_right::total_answer::total_response -> %d::%d::%d::%d" \
                           % (num, total_right_count, total_answer_count, total_response_count)
        print(string_bool_right)
        print(string_count_right_count)
        print(string_total_num)
        logging.info("bool_right_count:%d", bool_right_count)
        logging.info("count_right_count:%d", count_right_count)
        logging.info(
            "total_num::total_right::total_answer::total_response -> %d::%d::%d::%d",
            num, total_right_count, total_answer_count, total_response_count)
        linelist.append(string_bool_right + '\r\n')
        linelist.append(string_count_right_count + '\r\n')
        linelist.append(string_total_num + '\r\n')

        mean_pre = total_precision / num if num != 0 else 0.0
        mean_recall = total_recall / num if num != 0 else 0.0
        mean_pre2 = float(
            total_right_count
        ) / total_answer_count if total_answer_count != 0 else 0.0
        mean_recall2 = float(
            total_right_count
        ) / total_response_count if total_response_count != 0 else 0.0
        string_mean_pre = "state::mean_pre::mean_recall -> %s::%f::%f" % (
            state, mean_pre, mean_recall)
        string_mean_pre2 = "state::mean_pre2::mean_recall2 -> %s::%f::%f" % (
            state, mean_pre2, mean_recall2)
        print(string_mean_pre)
        print(string_mean_pre2)
        print("++++++++++++++")
        logging.info("state::mean_pre::mean_recall -> %s::%f::%f", state,
                     mean_pre, mean_recall)
        logging.info("state::mean_pre2::mean_recall2 -> %s::%f::%f", state,
                     mean_pre2, mean_recall2)
        logging.info("++++++++++++++")
        linelist.append(string_mean_pre + '\r\n')
        linelist.append(string_mean_pre2 + '\r\n')
        linelist.append('++++++++++++++\n\n')
        return linelist
def transMask2Action():
    with open("../../data/auto_QA_data/CSQA_ANNOTATIONS_test.json", 'r') as load_f, open("../../data/saves/crossent_even_1%/sample_final_predict.actions", 'r') as predict_actions \
            , open("../../data/auto_QA_data/mask_test/SAMPLE_FINAL_test.question", 'r') as RL_test:
        linelist = list()
        load_dict = json.load(load_f)
        num = 0
        total_precision = 0
        total_recall = 0
        total_jaccard = 0
        total_f1 = 0
        total_right_count = 0
        total_answer_count = 0
        total_response_count = 0
        bool_right_count = 0
        count_right_count = 0
        for x, y in zip(predict_actions, RL_test):
            action = x.strip().split(":")[1]
            id = y.strip().split()[0]

            if True:
                num += 1
                entity_mask = load_dict[id]["entity_mask"] if load_dict[id][
                    "entity_mask"] != None else {}
                relation_mask = load_dict[id]["relation_mask"] if load_dict[
                    id]["relation_mask"] != None else {}
                type_mask = load_dict[id][
                    "type_mask"] if load_dict[id]["type_mask"] != None else {}
                response_entities = load_dict[id]["response_entities"].strip(
                ) if load_dict[id]["response_entities"] != None else ""
                response_entities = response_entities.strip().split("|")
                orig_response = load_dict[id]["orig_response"].strip(
                ) if load_dict[id]["orig_response"] != None else ""
                # Update(add) elements in dict.
                entity_mask.update(relation_mask)
                entity_mask.update(type_mask)
                new_action = list()
                # Default separator of split() method is any whitespace.
                for act in action.split():
                    for k, v in entity_mask.items():
                        if act == v:
                            act = k
                            break
                    new_action.append(act)
                print("{0}".format(num))
                '''print("{0}: {1}->{2}".format(num, id, action))'''
                logging.info("%d: %s -> %s", num, id, action)
                #print(" ".join(new_action))
                symbolic_seq = list2dict(new_action)
                symbolic_exe = Symbolics_WebQSP(symbolic_seq)
                answer = symbolic_exe.executor()

                right_count = 0
                for e in response_entities:
                    if (e in answer):
                        right_count += 1
                total_right_count += right_count
                total_answer_count += len(answer)
                total_response_count += len(response_entities)

                # precision
                precision = right_count / float(
                    len(answer)) if len(answer) != 0 else 0
                total_precision += precision

                # recall
                recall = (right_count / float(len(response_entities))
                          ) if len(response_entities) != 0 else 0
                total_recall += recall

                # jaccard
                intersec = set(response_entities).intersection(set(answer))
                union = set([])
                union.update(response_entities)
                union.update(answer)
                jaccard = float(len(intersec)) / float(
                    len(answer)) if len(answer) != 0 else 0
                total_jaccard += jaccard

                # f1
                f1 = float(len(intersec)) / float(len(
                    response_entities)) if len(response_entities) != 0 else 0
                total_f1 += f1
                '''print("orig:", len(response_entities), "answer:", len(answer), "right:", right_count)
                print("Precision:", precision),
                print("Recall:", recall)
                print("Recall:", jaccard)
                print('===============================')'''
                logging.info("orig:%d, answer:%d, right:%d",
                             len(response_entities), len(answer), right_count)
                logging.info("Precision:%f", precision)
                logging.info("Recall:%f", recall)
                logging.info("Jaccard:%f", jaccard)
                logging.info("F1:%f", f1)
                logging.info("============================")

        # print answer
        mean_pre = total_precision / num
        mean_recall = total_recall / num
        mean_jaccard = total_jaccard / num
        mean_f1 = total_f1 / num
        mean_pre2 = float(total_right_count) / total_answer_count
        mean_recall2 = float(total_right_count) / total_response_count
        string_mean_pre = "state::mean_pre::mean_recall -> %s::%f::%f" % (
            state, mean_pre, mean_recall)
        string_mean_pre2 = "state::mean_pre2::mean_recall2 -> %s::%f::%f" % (
            state, mean_pre2, mean_recall2)
        print(string_mean_pre)
        print(string_mean_pre2)
        print("++++++++++++++")
        logging.info("state::mean_pre::mean_recall -> %s::%f::%f", state,
                     mean_pre, mean_recall)
        logging.info("state::mean_pre2::mean_recall2 -> %s::%f::%f", state,
                     mean_pre2, mean_recall2)
        logging.info("++++++++++++++")
        linelist.append(string_mean_pre + '\r\n')
        linelist.append(string_mean_pre2 + '\r\n')
        linelist.append('++++++++++++++\n\n')
        return linelist
def transMask2Action(state, withint):
    if withint:
        json_path = '../../data/auto_QA_data/CSQA_ANNOTATIONS_test_INT.json'
        question_path = '../../data/auto_QA_data/mask_test/SAMPLE_FINAL_INT_test.question'
    else:
        json_path = '../../data/auto_QA_data/CSQA_ANNOTATIONS_test.json'
        question_path = '../../data/auto_QA_data/mask_test/SAMPLE_FINAL_test.question'
    with open(json_path, 'r') as load_f, open("../../data/saves/crossent_even_1%_att=0_withINT/sample_final_int_predict.actions", 'r') as predict_actions \
            , open(question_path, 'r') as RL_test:
        # with open("../../data/auto_QA_data/CSQA_ANNOTATIONS_test.json", 'r') as load_f, open("../../data/saves/rl_even_TR_batch8_1%/final_predict.actions", 'r') as predict_actions \
        #         , open("../../data/auto_QA_data/mask_test/FINAL_test.question", 'r') as RL_test:
        linelist = list()
        load_dict = json.load(load_f)
        num = 0
        total_precision = 0
        total_recall = 0
        total_right_count = 0
        total_answer_count = 0
        total_response_count = 0
        bool_right_count = 0
        count_right_count = 0
        for x, y in zip(predict_actions, RL_test):
            action = x.strip().split(":")[1]
            id = y.strip().split()[0]

            if (id.startswith(state)):
                num += 1
                entity_mask = load_dict[id]["entity_mask"] if load_dict[id][
                    "entity_mask"] != None else {}
                relation_mask = load_dict[id]["relation_mask"] if load_dict[
                    id]["relation_mask"] != None else {}
                type_mask = load_dict[id][
                    "type_mask"] if load_dict[id]["type_mask"] != None else {}
                # todo: test
                int_mask = load_dict[id][
                    "int_mask"] if 'int_mask' in load_dict[id] else {}
                response_entities = load_dict[id]["response_entities"].strip(
                ) if load_dict[id]["response_entities"] != None else ""
                response_entities = response_entities.strip().split("|")
                orig_response = load_dict[id]["orig_response"].strip(
                ) if load_dict[id]["orig_response"] != None else ""
                # Update(add) elements in dict.
                entity_mask.update(relation_mask)
                entity_mask.update(type_mask)
                # todo: test
                entity_mask.update(int_mask)
                new_action = list()
                # Default separator of split() method is any whitespace.
                for act in action.split():
                    for k, v in entity_mask.items():
                        if act == v:
                            act = k
                            break
                    new_action.append(act)
                print("{0}".format(num))
                '''print("{0}: {1}->{2}".format(num, id, action))'''
                logging.info("%d: %s -> %s", num, id, action)
                #print(" ".join(new_action))
                symbolic_seq = list2dict(new_action)
                # symbolic_seq.append({"A11":["","",""]})### A11
                # Modify with magic.
                # if state.startswith("Verification(Boolean)(All)"):
                #     symbolic_seq[-1] = {"A3":["","",""]} if not symbolic_seq[-1].has_key("A3") else symbolic_seq[-1]### A3
                # if state.startswith("QuantitativeReasoning(Count)(All)") or state.startswith("ComparativeReasoning(Count)(All)"):
                #     symbolic_seq[-1] = {"A11": ["", "", ""]} if not symbolic_seq[-1].has_key("A11") else symbolic_seq[-1]
                symbolic_exe = Symbolics(symbolic_seq)
                answer = symbolic_exe.executor()

                if state.startswith("QuantitativeReasoning(Count)(All)"
                                    ) or state.startswith(
                                        "ComparativeReasoning(Count)(All)"):
                    '''print (symbolic_seq)
                    print ("%s::%s" %(answer, orig_response))'''
                    logging.info(symbolic_seq)
                    logging.info("answer:%s, orig_response:%s", answer,
                                 orig_response)

                    if orig_response.isdigit() and answer == int(
                            orig_response):
                        count_right_count += 1
                        '''print ("count_right_count+1")'''
                        logging.info("count_right_count+1")
                    else:
                        import re
                        orig_response = re.findall(r"\d+\.?\d*", orig_response)
                        orig_response = sum([int(i) for i in orig_response])
                        if answer == orig_response:
                            count_right_count += 1
                            '''print ("count_right_count+1")'''
                            logging.info("count_right_count+1")
                # TODO: how to compute accuracy of BOOLEAN? By using response or response_bools?
                # For boolean, the returned answer is a list.
                if state.startswith("Verification(Boolean)(All)"):
                    # To judge the returned answers are in dict format or boolean format.
                    if (type(answer) == dict):
                        temp = []
                        if '|BOOL_RESULT|' in answer:
                            temp.extend(answer['|BOOL_RESULT|'])
                            answer = temp
                            answer_string = transformBooleanToString(answer)
                            if answer_string != '' and answer_string == orig_response:
                                bool_right_count += 1
                                '''print("bool_right_count+1")'''
                                logging.info("bool_right_count+1")
                    else:
                        if answer == True:
                            answer = "YES"
                        if answer == False:
                            answer = "NO"
                        if answer == orig_response:
                            bool_right_count += 1
                            '''print("bool_right_count+1")'''
                            logging.info("bool_right_count+1")

                # To judge the returned answers are in dict format or boolean format.
                if (type(answer) == dict):
                    temp = []
                    if '|BOOL_RESULT|' in answer:
                        temp.extend(answer['|BOOL_RESULT|'])
                    else:
                        for key, value in answer.items():
                            if (value):
                                temp.extend(list(value))
                    answer = temp

                elif type(answer) == type([]) or type(answer) == type(set([])):
                    answer = sorted((list(answer)))
                elif type(answer) == int:
                    answer = [answer]
                else:
                    answer = [answer]

                right_count = 0
                for e in response_entities:
                    if (e in answer):
                        right_count += 1
                total_right_count += right_count
                total_answer_count += len(answer)
                total_response_count += len(response_entities)
                precision = right_count / float(
                    len(answer)) if len(answer) != 0 else 0
                total_precision += precision
                recall = (right_count / float(len(response_entities))
                          ) if len(response_entities) != 0 else 0
                total_recall += recall
                '''print("orig:", len(response_entities), "answer:", len(answer), "right:", right_count)
                print("Precision:", precision),
                print("Recall:", recall)
                print('===============================')'''
                logging.info("orig:%d, answer:%d, right:%d",
                             len(response_entities), len(answer), right_count)
                logging.info("Precision:%f", precision)
                logging.info("Recall:%f", recall)
                logging.info("============================")
            # print answer
        string_bool_right = "bool_right_count: %d" % bool_right_count
        string_count_right_count = "count_right_count: %d" % count_right_count
        string_total_num = "total_num::total_right::total_answer::total_response -> %d::%d::%d::%d" % (
            num, total_right_count, total_answer_count, total_response_count)
        print(string_bool_right)
        print(string_count_right_count)
        print(string_total_num)
        logging.info("bool_right_count:%d", bool_right_count)
        logging.info("count_right_count:%d", count_right_count)
        logging.info(
            "total_num::total_right::total_answer::total_response -> %d::%d::%d::%d",
            num, total_right_count, total_answer_count, total_response_count)
        linelist.append(string_bool_right + '\r\n')
        linelist.append(string_count_right_count + '\r\n')
        linelist.append(string_total_num + '\r\n')

        mean_pre = total_precision / num if num != 0 else 0.0
        mean_recall = total_recall / num if num != 0 else 0.0
        mean_pre2 = float(
            total_right_count
        ) / total_answer_count if total_answer_count != 0 else 0.0
        mean_recall2 = float(
            total_right_count
        ) / total_response_count if total_response_count != 0 else 0.0
        string_mean_pre = "state::mean_pre::mean_recall -> %s::%f::%f" % (
            state, mean_pre, mean_recall)
        string_mean_pre2 = "state::mean_pre2::mean_recall2 -> %s::%f::%f" % (
            state, mean_pre2, mean_recall2)
        print(string_mean_pre)
        print(string_mean_pre2)
        print("++++++++++++++")
        logging.info("state::mean_pre::mean_recall -> %s::%f::%f", state,
                     mean_pre, mean_recall)
        logging.info("state::mean_pre2::mean_recall2 -> %s::%f::%f", state,
                     mean_pre2, mean_recall2)
        logging.info("++++++++++++++")
        linelist.append(string_mean_pre + '\r\n')
        linelist.append(string_mean_pre2 + '\r\n')
        linelist.append('++++++++++++++\n\n')
        return linelist
示例#4
0
def calc_single_sample(withint=False):
    r"""To get the result of the predicted action sequence.
            Args:
                qid: user should input the qid of the testing question.
                action: user should input the generated action for the question.

            Yields:
                testing result.

            Example::
                # >>> Input id:
                # >>> SimpleQuestion(Direct)4879
                # >>> Input action:
                # >>> 244: A1 ( ENTITY1 RELATION1 TYPE1 ) A9 ( ENTITY2 RELATION1 TYPE1 )
                # >>> answer:
                # >>> {'|': ['Q674182', 'Q1065', 'Q81299', 'Q7184', 'Q842490',
                'Q19771', 'Q37143', 'Q188822', 'Q1043527']}

            """
    if withint:
        json_path = '../../data/auto_QA_data/CSQA_ANNOTATIONS_test_INT.json'
    else:
        json_path = '../../data/auto_QA_data/CSQA_ANNOTATIONS_test.json'
    with open(json_path, 'r') as load_f:
        load_dict = json.load(load_f)
        print('Dict loading is done!')
        while True:
            print("------------------------------")
            print("$$ represents exit.")
            print("Input id:")
            qid = sys.stdin.readline().strip()
            if qid == '$$':
                break
            print("Input action:")
            action = sys.stdin.readline().strip()
            if action == '$$':
                break
            action, id = action.strip().split(':')[1].strip(), qid.strip()
            print('question:')
            print(str(load_dict[id]["question"]))
            entity_mask = load_dict[id]["entity_mask"] \
                if load_dict[id]["entity_mask"] is not None else {}
            relation_mask = load_dict[id]["relation_mask"] \
                if load_dict[id]["relation_mask"] is not None else {}
            type_mask = load_dict[id]["type_mask"] \
                if load_dict[id]["type_mask"] is not None else {}
            int_mask = load_dict[id]["int_mask"] \
                if 'int_mask' in load_dict[id] else {}
            response_entities = load_dict[id]["response_entities"].strip() \
                if load_dict[id]["response_entities"] is not None else ""
            response_entities = response_entities.strip().split("|")
            orig_response = load_dict[id]["orig_response"].strip() \
                if load_dict[id]["orig_response"] is not None else ""
            # Update(add) elements in dict.
            entity_mask.update(relation_mask)
            entity_mask.update(type_mask)
            entity_mask.update(int_mask)
            new_action = list()
            # Default separator of split() method is any whitespace.
            for act in action.split():
                for k, v in entity_mask.items():
                    if act == v:
                        act = k
                        break
                new_action.append(act)
            symbolic_seq = list2dict(new_action)
            print('action sequence:')
            print(symbolic_seq)
            symbolic_exe = Symbolics(symbolic_seq)
            answer = symbolic_exe.executor()
            print('answer:')
            print(answer)
            print('number:')
            print(len(answer) if isinstance(answer, list) else 0)
            print('orig_response:')
            print(orig_response)
            print('response_entities:')
            print(response_entities)
            print('response_number:')
            print(
                len(response_entities) if isinstance(response_entities, list
                                                     ) else 0)