def set_model(self): print('[Runner] - Initializing Transformer model...') # build the Transformer model with speech prediction head model_config = TransformerConfig(self.config) self.dr = model_config.downsample_rate self.model = TransformerForMaskedAcousticModel(model_config, self.input_dim, self.output_dim).to(self.device) self.model.train() if self.args.multi_gpu: self.model = torch.nn.DataParallel(self.model) print('[Runner] - Multi-GPU training Enabled: ' + str(torch.cuda.device_count())) print('[Runner] - Number of parameters: ' + str(sum(p.numel() for p in self.model.parameters() if p.requires_grad))) # Setup optimizer param_optimizer = list(self.model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01}, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] if self.apex: try: from apex.optimizers import FP16_Optimizer from apex.optimizers import FusedAdam except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") optimizer = FusedAdam(optimizer_grouped_parameters, lr=self.learning_rate, bias_correction=False, max_grad_norm=1.0) if self.config['optimizer']['loss_scale'] == 0: self.optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True) else: self.optimizer = FP16_Optimizer(optimizer, static_loss_scale=self.config['optimizer']['loss_scale']) self.warmup_linear = WarmupLinearSchedule(warmup=self.warmup_proportion, t_total=self.total_steps) else: self.optimizer = BertAdam(optimizer_grouped_parameters, lr=self.learning_rate, warmup=self.warmup_proportion, t_total=self.total_steps)
class Runner(): ''' Handler for complete pre-training progress of upstream models ''' def __init__(self, args, config, dataloader, ckpdir): self.device = torch.device('cuda') if ( args.gpu and torch.cuda.is_available()) else torch.device('cpu') if torch.cuda.is_available(): print('[Runner] - CUDA is available!') self.model_kept = [] self.global_step = 1 self.log = SummaryWriter(ckpdir) self.args = args self.config = config self.dataloader = dataloader self.ckpdir = ckpdir # optimizer self.learning_rate = float(config['optimizer']['learning_rate']) self.warmup_proportion = config['optimizer']['warmup_proportion'] self.gradient_accumulation_steps = config['optimizer'][ 'gradient_accumulation_steps'] self.gradient_clipping = config['optimizer']['gradient_clipping'] # Training details self.apex = config['runner']['apex'] self.total_steps = config['runner']['total_steps'] self.log_step = config['runner']['log_step'] self.save_step = config['runner']['save_step'] self.duo_feature = config['runner']['duo_feature'] self.max_keep = config['runner']['max_keep'] # model self.transformer_config = config['transformer'] self.input_dim = self.transformer_config['input_dim'] self.output_dim = 1025 if self.duo_feature else None # output dim is the same as input dim if not using duo features def set_model(self): print('[Runner] - Initializing Transformer model...') # build the Transformer model with speech prediction head model_config = TransformerConfig(self.config) self.dr = model_config.downsample_rate self.hidden_size = model_config.hidden_size self.model = TransformerForMaskedAcousticModel( model_config, self.input_dim, self.output_dim).to(self.device) self.model.train() if self.args.multi_gpu: self.model = torch.nn.DataParallel(self.model) print('[Runner] - Multi-GPU training Enabled: ' + str(torch.cuda.device_count())) print('[Runner] - Number of parameters: ' + str( sum(p.numel() for p in self.model.parameters() if p.requires_grad))) # Setup optimizer param_optimizer = list(self.model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [{ 'params': [ p for n, p in param_optimizer if not any(nd in n for nd in no_decay) ], 'weight_decay': 0.01 }, { 'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0 }] if self.apex: try: from apex.optimizers import FP16_Optimizer from apex.optimizers import FusedAdam except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training." ) optimizer = FusedAdam(optimizer_grouped_parameters, lr=self.learning_rate, bias_correction=False, max_grad_norm=1.0) if self.config['optimizer']['loss_scale'] == 0: self.optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True) else: self.optimizer = FP16_Optimizer( optimizer, static_loss_scale=self.config['optimizer']['loss_scale']) self.warmup_linear = WarmupLinearSchedule( warmup=self.warmup_proportion, t_total=self.total_steps) else: self.optimizer = BertAdam(optimizer_grouped_parameters, lr=self.learning_rate, warmup=self.warmup_proportion, t_total=self.total_steps) def save_model(self, name='states', to_path=None): all_states = { 'SpecHead': self.model.SpecHead.state_dict() if not self.args.multi_gpu else self.model.module.SpecHead.state_dict(), 'Transformer': self.model.Transformer.state_dict() if not self.args.multi_gpu else self.model.module.Transformer.state_dict(), 'Optimizer': self.optimizer.state_dict(), 'Global_step': self.global_step, 'Settings': { 'Config': self.config, 'Paras': self.args, }, } if to_path is None: new_model_path = '{}/{}-{}.ckpt'.format(self.ckpdir, name, self.global_step) else: new_model_path = to_path torch.save(all_states, new_model_path) self.model_kept.append(new_model_path) if len(self.model_kept) >= self.max_keep: os.remove(self.model_kept[0]) self.model_kept.pop(0) def up_sample_frames(self, spec, return_first=False): if len(spec.shape) != 3: spec = spec.unsqueeze(0) assert (len(spec.shape) == 3 ), 'Input should have acoustic feature of shape BxTxD' # spec shape: [batch_size, sequence_length // downsample_rate, output_dim * downsample_rate] spec_flatten = spec.view(spec.shape[0], spec.shape[1] * self.dr, spec.shape[2] // self.dr) if return_first: return spec_flatten[0] return spec_flatten # spec_flatten shape: [batch_size, sequence_length * downsample_rate, output_dim // downsample_rate] def down_sample_frames(self, spec): left_over = spec.shape[1] % self.dr if left_over != 0: spec = spec[:, :-left_over, :] spec_stacked = spec.view(spec.shape[0], spec.shape[1] // self.dr, spec.shape[2] * self.dr) return spec_stacked def process_data(self, spec): """Process training data for the masked acoustic model""" with torch.no_grad(): assert ( len(spec) == 5 ), 'dataloader should return (spec_masked, pos_enc, mask_label, attn_mask, spec_stacked)' # Unpack and Hack bucket: Bucketing should cause acoustic feature to have shape 1xBxTxD' spec_masked = spec[0].squeeze(0) pos_enc = spec[1].squeeze(0) mask_label = spec[2].squeeze(0) attn_mask = spec[3].squeeze(0) spec_stacked = spec[4].squeeze(0) spec_masked = spec_masked.to(device=self.device) if pos_enc.dim() == 3: # pos_enc: (batch_size, seq_len, hidden_size) # GPU memory need (batch_size * seq_len * hidden_size) pos_enc = torch.FloatTensor(pos_enc).to(device=self.device) elif pos_enc.dim() == 2: # pos_enc: (seq_len, hidden_size) # GPU memory only need (seq_len * hidden_size) even after expanded pos_enc = torch.FloatTensor(pos_enc).to( device=self.device).expand(spec_masked.size(0), *pos_enc.size()) mask_label = torch.ByteTensor(mask_label).to(device=self.device) attn_mask = torch.FloatTensor(attn_mask).to(device=self.device) spec_stacked = spec_stacked.to(device=self.device) return spec_masked, pos_enc, mask_label, attn_mask, spec_stacked # (x, pos_enc, mask_label, attention_mask. y) def train(self): ''' Self-Supervised Pre-Training of Transformer Model''' pbar = tqdm(total=self.total_steps) while self.global_step <= self.total_steps: progress = tqdm(self.dataloader, desc="Iteration") step = 0 loss_val = 0 for batch_is_valid, *batch in progress: try: if self.global_step > self.total_steps: break if not batch_is_valid: continue step += 1 spec_masked, pos_enc, mask_label, attn_mask, spec_stacked = self.process_data( batch) loss, pred_spec = self.model(spec_masked, pos_enc, mask_label, attn_mask, spec_stacked) # Accumulate Loss if self.gradient_accumulation_steps > 1: loss = loss / self.gradient_accumulation_steps if self.apex and self.args.multi_gpu: raise NotImplementedError elif self.apex: self.optimizer.backward(loss) elif self.args.multi_gpu: loss = loss.sum() loss.backward() else: loss.backward() loss_val += loss.item() # Update if (step + 1) % self.gradient_accumulation_steps == 0: if self.apex: # modify learning rate with special warm up BERT uses # if conifg.apex is False, BertAdam is used and handles this automatically lr_this_step = self.learning_rate * self.warmup_linear.get_lr( self.global_step, self.warmup_proportion) for param_group in self.optimizer.param_groups: param_group['lr'] = lr_this_step # Step grad_norm = torch.nn.utils.clip_grad_norm_( self.model.parameters(), self.gradient_clipping) if math.isnan(grad_norm): print( '[Runner] - Error : grad norm is NaN @ step ' + str(self.global_step)) else: self.optimizer.step() self.optimizer.zero_grad() if self.global_step % self.log_step == 0: # Log self.log.add_scalar('lr', self.optimizer.get_lr()[0], self.global_step) self.log.add_scalar('loss', (loss_val), self.global_step) self.log.add_scalar('gradient norm', grad_norm, self.global_step) progress.set_description("Loss %.4f" % (loss_val)) if self.global_step % self.save_step == 0: self.save_model('states') mask_spec = self.up_sample_frames( spec_masked[0], return_first=True) pred_spec = self.up_sample_frames( pred_spec[0], return_first=True) true_spec = self.up_sample_frames( spec_stacked[0], return_first=True) mask_spec = plot_spectrogram_to_numpy( mask_spec.data.cpu().numpy()) pred_spec = plot_spectrogram_to_numpy( pred_spec.data.cpu().numpy()) true_spec = plot_spectrogram_to_numpy( true_spec.data.cpu().numpy()) self.log.add_image('mask_spec', mask_spec, self.global_step) self.log.add_image('pred_spec', pred_spec, self.global_step) self.log.add_image('true_spec', true_spec, self.global_step) loss_val = 0 pbar.update(1) self.global_step += 1 except RuntimeError as e: if 'CUDA out of memory' in str(e): print('CUDA out of memory at step: ', self.global_step) torch.cuda.empty_cache() self.optimizer.zero_grad() else: raise pbar.close() self.log.close()
class Solver(): ''' Super class Solver for all kinds of tasks''' def __init__(self, config, paras): # General Settings self.config = config self.paras = paras self.transformer_config = config['transformer'] self.device = torch.device('cuda') if ( self.paras.gpu and torch.cuda.is_available()) else torch.device('cpu') if torch.cuda.is_available(): self.verbose('CUDA is available!') # path and directories self.exp_name = paras.name if self.exp_name is None: self.exp_name = '_'.join([ paras.config.split('/')[-1].replace('.yaml', ''), 'sd' + str(paras.seed) ]) self.ckpdir = paras.ckpdir self.expdir = os.path.join(self.ckpdir, self.exp_name) self.load = paras.load # only for test self.ckpt = os.path.join(self.ckpdir, paras.ckpt) # model self.load_model_list = config['solver']['load_model_list'] self.duo_feature = config['solver']['duo_feature'] self.output_dim = 1025 if self.duo_feature else None # output dim is the same as input dim if not using duo features if 'input_dim' in self.transformer_config: self.input_dim = self.transformer_config['input_dim'] else: raise ValueError( 'Please update your config file to include the attribute `input_dim`.' ) def verbose(self, msg, end='\n'): ''' Verbose function for print information to stdout''' if self.paras.verbose: print('[SOLVER] - ', msg, end=end) def load_data(self, split='train'): ''' Load data for training / testing''' if split == 'train': self.verbose('Loading source data ' + str(self.config['dataloader']['train_set']) + ' from ' + self.config['dataloader']['data_path']) if self.duo_feature: self.verbose('Loading target data ' + str(self.config['dataloader']['train_set']) + ' from ' + self.config['dataloader']['target_path']) elif split == 'test': self.verbose('Loading testing data ' + str(self.config['dataloader']['test_set']) + ' from ' + self.config['dataloader']['data_path']) else: raise NotImplementedError('Invalid `split` argument!') if self.duo_feature: setattr(self, 'dataloader', get_Dataloader(split, load='duo', use_gpu=self.paras.gpu, \ mam_config=self.transformer_config, **self.config['dataloader'])) # run_mam is automatically performed else: setattr(self, 'dataloader', get_Dataloader(split, load='acoustic', use_gpu=self.paras.gpu, run_mam=True, \ mam_config=self.transformer_config, **self.config['dataloader'])) def set_model(self, inference=False, with_head=False, from_path=None, output_attention=False): self.verbose('Initializing Transformer model.') # uild the Transformer model with speech prediction head self.model_config = TransformerConfig(self.config) self.dr = self.model_config.downsample_rate self.hidden_size = self.model_config.hidden_size self.with_head = with_head self.output_attention = output_attention if not inference or with_head: self.model = TransformerForMaskedAcousticModel( self.model_config, self.input_dim, self.output_dim, self.output_attention).to(self.device) self.transformer = self.model.Transformer if self.paras.multi_gpu: self.model = torch.nn.DataParallel(self.model) self.transformer = torch.nn.DataParallel(self.transformer) self.verbose('Multi-GPU training Enabled: ' + str(torch.cuda.device_count())) self.verbose('Number of parameters: ' + str( sum(p.numel() for p in self.model.parameters() if p.requires_grad))) if inference and not with_head: self.transformer = TransformerModel( self.model_config, self.input_dim, self.output_attention).to(self.device) if self.paras.multi_gpu: self.transformer = torch.nn.DataParallel(self.transformer) self.verbose('Multi-GPU training Enabled: ' + str(torch.cuda.device_count())) self.verbose('Number of parameters: ' + str( sum(p.numel() for p in self.transformer.parameters() if p.requires_grad))) self.transformer.eval() elif inference and with_head: self.model.eval() elif not inference: self.model.train() # Setup optimizer param_optimizer = list(self.model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [{ 'params': [ p for n, p in param_optimizer if not any(nd in n for nd in no_decay) ], 'weight_decay': 0.01 }, { 'params': [ p for n, p in param_optimizer if any(nd in n for nd in no_decay) ], 'weight_decay': 0.0 }] if self.apex: try: from apex.optimizers import FP16_Optimizer from apex.optimizers import FusedAdam except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training." ) optimizer = FusedAdam(optimizer_grouped_parameters, lr=self.learning_rate, bias_correction=False, max_grad_norm=1.0) if self.config['optimizer']['loss_scale'] == 0: self.optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True) else: self.optimizer = FP16_Optimizer( optimizer, static_loss_scale=self.config['optimizer'] ['loss_scale']) self.warmup_linear = WarmupLinearSchedule( warmup=self.warmup_proportion, t_total=self.total_steps) else: self.optimizer = BertAdam(optimizer_grouped_parameters, lr=self.learning_rate, warmup=self.warmup_proportion, t_total=self.total_steps) else: raise NotImplementedError('Invalid Arguments!') if self.load: # This will be set to True by default when Tester is running set_model() self.load_model(inference=inference, with_head=with_head, from_path=from_path) def save_model(self, name='states', model_all=True, to_path=None): if model_all: all_states = { 'SpecHead': self.model.SpecHead.state_dict() if not self.paras.multi_gpu else self.model.module.SpecHead.state_dict(), 'Transformer': self.transformer.state_dict() if not self.paras.multi_gpu else self.transformer.module.state_dict(), 'Optimizer': self.optimizer.state_dict(), 'Global_step': self.global_step, 'Settings': { 'Config': self.config, 'Paras': self.paras, }, } else: all_states = { 'Transformer': self.transformer.state_dict() if not self.paras.multi_gpu else self.transformer.module.state_dict(), 'Settings': { 'Config': self.config, 'Paras': self.paras, }, } if to_path is None: new_model_path = '{}/{}-{}.ckpt'.format(self.expdir, name, self.global_step) else: new_model_path = to_path torch.save(all_states, new_model_path) self.model_kept.append(new_model_path) if len(self.model_kept) >= self.max_keep: os.remove(self.model_kept[0]) self.model_kept.pop(0) def load_model(self, inference=False, with_head=False, from_path=None): if from_path is not None: self.verbose('Load model from {}'.format(from_path)) all_states = torch.load(from_path, map_location='cpu') self.load_model_list = ['Transformer'] else: self.verbose('Load model from {}'.format(self.ckpt)) all_states = torch.load(self.ckpt, map_location='cpu') if 'SpecHead' in self.load_model_list: if not inference or with_head: try: if not self.paras.multi_gpu: self.model.SpecHead.load_state_dict( all_states['SpecHead']) else: self.model.module.SpecHead.load_state_dict( all_states['SpecHead']) self.verbose('[SpecHead] - Loaded') except: self.verbose('[SpecHead - X]') if 'Transformer' in self.load_model_list: try: state_dict = all_states['Transformer'] # Load from a PyTorch state_dict old_keys = [] new_keys = [] for key in state_dict.keys(): new_key = None if 'gamma' in key: new_key = key.replace('gamma', 'weight') if 'beta' in key: new_key = key.replace('beta', 'bias') if new_key: old_keys.append(key) new_keys.append(new_key) for old_key, new_key in zip(old_keys, new_keys): state_dict[new_key] = state_dict.pop(old_key) missing_keys = [] unexpected_keys = [] error_msgs = [] # copy state_dict so _load_from_state_dict can modify it metadata = getattr(state_dict, '_metadata', None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata def load(module, prefix=''): local_metadata = {} if metadata is None else metadata.get( prefix[:-1], {}) module._load_from_state_dict(state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs) for name, child in module._modules.items(): if child is not None: load(child, prefix + name + '.') # perform load if not self.paras.multi_gpu: load(self.transformer) else: load(self.transformer.module) if len(missing_keys) > 0: self.verbose( "Weights of {} not initialized from pretrained model: {}" .format(self.transformer.__class__.__name__, missing_keys)) if len(unexpected_keys) > 0: self.verbose( "Weights from pretrained model not used in {}: {}". format(self.transformer.__class__.__name__, unexpected_keys)) if len(error_msgs) > 0: raise RuntimeError( 'Error(s) in loading state_dict for {}:\n\t{}'.format( self.transformer.__class__.__name__, "\n\t".join(error_msgs))) self.verbose('[Transformer] - Loaded') except: self.verbose('[Transformer - X]') if 'Optimizer' in self.load_model_list and not inference: try: self.optimizer.load_state_dict(all_states['Optimizer']) for state in self.optimizer.state.values(): for k, v in state.items(): if torch.is_tensor(v): state[k] = v.cuda() self.verbose('[Optimizer] - Loaded') except: self.verbose('[Optimizer - X]') if 'Global_step' in self.load_model_list and not inference: try: self.global_step = all_states['Global_step'] self.verbose('[Global_step] - Loaded') except: self.verbose('[Global_step - X]') self.verbose('Model loading complete!') def up_sample_frames(self, spec, return_first=False): if len(spec.shape) != 3: spec = spec.unsqueeze(0) assert (len(spec.shape) == 3 ), 'Input should have acoustic feature of shape BxTxD' # spec shape: [batch_size, sequence_length // downsample_rate, output_dim * downsample_rate] spec_flatten = spec.view(spec.shape[0], spec.shape[1] * self.dr, spec.shape[2] // self.dr) if return_first: return spec_flatten[0] return spec_flatten # spec_flatten shape: [batch_size, sequence_length * downsample_rate, output_dim // downsample_rate] def down_sample_frames(self, spec): left_over = spec.shape[1] % self.dr if left_over != 0: spec = spec[:, :-left_over, :] spec_stacked = spec.view(spec.shape[0], spec.shape[1] // self.dr, spec.shape[2] * self.dr) return spec_stacked def position_encoding(self, seq_len, batch_size=None, padding_idx=None): ''' Sinusoid position encoding table ''' def cal_angle(position, hid_idx): return position / np.power(10000, 2 * (hid_idx // 2) / self.hidden_size) def get_posi_angle_vec(position): return [ cal_angle(position, hid_j) for hid_j in range(self.hidden_size) ] sinusoid_table = np.array( [get_posi_angle_vec(pos_i) for pos_i in range(seq_len)]) sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 if padding_idx is not None: sinusoid_table[ padding_idx:] = 0. # zero vector for padding dimension if batch_size is not None: batch_sinusoid_table = np.repeat(sinusoid_table[np.newaxis, ...], batch_size, axis=0) return batch_sinusoid_table # (batch_size, seq_len, hidden_size) else: return sinusoid_table # (seq_len, hidden_size)
def set_model(self, inference=False, with_head=False, from_path=None, output_attention=False): self.verbose('Initializing Transformer model.') # uild the Transformer model with speech prediction head self.model_config = TransformerConfig(self.config) self.dr = self.model_config.downsample_rate self.hidden_size = self.model_config.hidden_size self.with_head = with_head self.output_attention = output_attention if not inference or with_head: self.model = TransformerForMaskedAcousticModel( self.model_config, self.input_dim, self.output_dim, self.output_attention).to(self.device) self.transformer = self.model.Transformer if self.paras.multi_gpu: self.model = torch.nn.DataParallel(self.model) self.transformer = torch.nn.DataParallel(self.transformer) self.verbose('Multi-GPU training Enabled: ' + str(torch.cuda.device_count())) self.verbose('Number of parameters: ' + str( sum(p.numel() for p in self.model.parameters() if p.requires_grad))) if inference and not with_head: self.transformer = TransformerModel( self.model_config, self.input_dim, self.output_attention).to(self.device) if self.paras.multi_gpu: self.transformer = torch.nn.DataParallel(self.transformer) self.verbose('Multi-GPU training Enabled: ' + str(torch.cuda.device_count())) self.verbose('Number of parameters: ' + str( sum(p.numel() for p in self.transformer.parameters() if p.requires_grad))) self.transformer.eval() elif inference and with_head: self.model.eval() elif not inference: self.model.train() # Setup optimizer param_optimizer = list(self.model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [{ 'params': [ p for n, p in param_optimizer if not any(nd in n for nd in no_decay) ], 'weight_decay': 0.01 }, { 'params': [ p for n, p in param_optimizer if any(nd in n for nd in no_decay) ], 'weight_decay': 0.0 }] if self.apex: try: from apex.optimizers import FP16_Optimizer from apex.optimizers import FusedAdam except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training." ) optimizer = FusedAdam(optimizer_grouped_parameters, lr=self.learning_rate, bias_correction=False, max_grad_norm=1.0) if self.config['optimizer']['loss_scale'] == 0: self.optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True) else: self.optimizer = FP16_Optimizer( optimizer, static_loss_scale=self.config['optimizer'] ['loss_scale']) self.warmup_linear = WarmupLinearSchedule( warmup=self.warmup_proportion, t_total=self.total_steps) else: self.optimizer = BertAdam(optimizer_grouped_parameters, lr=self.learning_rate, warmup=self.warmup_proportion, t_total=self.total_steps) else: raise NotImplementedError('Invalid Arguments!') if self.load: # This will be set to True by default when Tester is running set_model() self.load_model(inference=inference, with_head=with_head, from_path=from_path)