示例#1
0
def webcam(style_transform_path, width=1280, height=720):
    """
    Captures and saves an image, perform style transfer, and again saves the styled image.
    Reads the styled image and show in window. 

    Saving and loading SHOULD BE eliminated, however this produces too much whitening in
    the "generated styled image". This may be caused by the async nature of VideoCapture,
    and I don't know how to fix it. 
    """
    # Device
    device = ("cuda" if torch.cuda.is_available() else "cpu")

    # Load Transformer Network
    print("Loading Transformer Network")
    net = transformer.TransformerNetwork()
    net.load_state_dict(torch.load(style_transform_path))
    net = net.to(device)
    print("Done Loading Transformer Network")

    # Set webcam settings
    cam = cv2.VideoCapture(0)
    cam.set(3, width)
    cam.set(4, height)

    # Main loop
    with torch.no_grad():
        count = 1
        while True:
            # Get webcam input
            ret_val, img = cam.read()

            # Mirror
            img = cv2.flip(img, 1)
            utils.saveimg(img, str(count) + ".png")

            # Free-up unneeded cuda memory
            torch.cuda.empty_cache()

            # Generate image
            content_image = utils.load_image(str(count) + ".png")
            content_tensor = utils.itot(content_image).to(device)
            generated_tensor = net(content_tensor)
            generated_image = utils.ttoi(generated_tensor.detach())
            if (PRESERVE_COLOR):
                generated_image = utils.transfer_color(content_image,
                                                       generated_image)
            utils.saveimg(generated_image, str(count + 1) + ".png")
            img2 = cv2.imread(str(count + 1) + ".png")

            count += 2
            # Show webcam
            cv2.imshow('Demo webcam', img2)
            if cv2.waitKey(1) == 27:
                break  # esc to quit

    # Free-up memories
    cam.release()
    cv2.destroyAllWindows()
示例#2
0
def stylize_folder(style_path, folder_containing_the_content_folder, save_folder, batch_size=1):
    """Stylizes images in a folder by batch
    If the images  are of different dimensions, use transform.resize() or use a batch size of 1
    IMPORTANT: Put content_folder inside another folder folder_containing_the_content_folder

    folder_containing_the_content_folder
        content_folder
            pic1.ext
            pic2.ext
            pic3.ext
            ...

    and saves as the styled images in save_folder as follow:

    save_folder
        pic1.ext
        pic2.ext
        pic3.ext
        ...
    """
    # Device
    device = ("cuda" if torch.cuda.is_available() else "cpu")

    # Image loader
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Lambda(lambda x: x.mul(255))
    ])
    image_dataset = utils.ImageFolderWithPaths(folder_containing_the_content_folder, transform=transform)
    image_loader = torch.utils.data.DataLoader(image_dataset, batch_size=batch_size)

    # Load Transformer Network
    net = transformer.TransformerNetwork()
    net.load_state_dict(torch.load(style_path))
    net = net.to(device)

    # Stylize batches of images
    with torch.no_grad():
        for content_batch, _, path in image_loader:
            # Free-up unneeded cuda memory
            torch.cuda.empty_cache()

            # Generate image
            generated_tensor = net(content_batch.to(device)).detach()

            # Save images
            for i in range(len(path)):
                generated_image = utils.ttoi(generated_tensor[i])
                if (PRESERVE_COLOR):
                    generated_image = utils.transfer_color(content_image, generated_image)
                image_name = os.path.basename(path[i])
                utils.saveimg(generated_image, save_folder + image_name)

#stylize()
示例#3
0
def webcam(style_transform_path, width=1280, height=720):
    """
    Captures and saves an image, perform style transfer, and again saves the styled image.
    Reads the styled image and show in window. 
    """
    # Device
    device = "cuda" if torch.cuda.is_available() else "cpu"

    # Load Transformer Network
    print("Loading Transformer Network")
    net = transformer.TransformerNetwork()
    net.load_state_dict(torch.load(style_transform_path))
    net = net.to(device)
    print("Done Loading Transformer Network")

    # Set webcam settings
    cam = cv2.VideoCapture(0)
    cam.set(3, width)
    cam.set(4, height)

    # Main loop
    with torch.no_grad():
        while True:
            # Get webcam input
            ret_val, img = cam.read()

            # Mirror
            img = cv2.flip(img, 1)

            # Free-up unneeded cuda memory
            torch.cuda.empty_cache()

            # Generate image
            content_tensor = utils.itot(img).to(device)
            generated_tensor = net(content_tensor)
            generated_image = utils.ttoi(generated_tensor.detach())
            if PRESERVE_COLOR:
                generated_image = utils.transfer_color(img, generated_image)

            generated_image = generated_image / 255

            # Show webcam
            cv2.imshow("Demo webcam", generated_image)
            if cv2.waitKey(1) == 27:
                break  # esc to quit

    # Free-up memories
    cam.release()
    cv2.destroyAllWindows()
示例#4
0
def webcam(style_transform_path, width=1280, height=720):
    # Device
    device = ("cuda" if torch.cuda.is_available() else "cpu")

    # Load Transformer Network
    print("Loading Transformer Network")
    net = transformer.TransformerNetwork()
    net.load_state_dict(torch.load(style_transform_path, map_location=device))
    net = net.to(device)
    print("Done Loading Transformer Network")

    # Set webcam settings
    cam = cv2.VideoCapture(0)
    cam.set(3, width)
    cam.set(4, height)

    # Main loop
    with torch.no_grad():
        count = 1
        while True:
            # Get webcam input
            ret_val, img = cam.read()

            # AI Mirror
            img = cv2.flip(img, 1)

            # Free-up unneeded cuda memory
            torch.cuda.empty_cache()

            # Generate image
            content_tensor = utils.itot(img).to(device)
            generated_tensor = net(content_tensor)
            generated_image = utils.ttoi(generated_tensor.detach())
            if (PRESERVE_COLOR):
                generated_image = utils.transfer_color(content_image,
                                                       generated_image)
            img2 = cv2.imdecode(
                cv2.imencode(".png", generated_image)[1], cv2.IMREAD_UNCHANGED)

            count += 2
            # Show webcam
            cv2.imshow('Demo webcam', img2)
            if cv2.waitKey(1) == 27:
                break  # esc to quit

    # Free-up memories
    cam.release()
    cv2.destroyAllWindows()
示例#5
0
def stylize_folder_single(style_path, content_folder, save_folder):
    """
    Reads frames/pictures as follows:

    content_folder
        pic1.ext
        pic2.ext
        pic3.ext
        ...

    and saves as the styled images in save_folder as follow:

    save_folder
        pic1.ext
        pic2.ext
        pic3.ext
        ...
    """
    # Device
    device = ("cuda" if torch.cuda.is_available() else "cpu")

    # Load Transformer Network
    net = transformer.TransformerNetwork()
    net.load_state_dict(torch.load(style_path))
    net = net.to(device)

    # Stylize every frame
    images = [img for img in os.listdir(content_folder) if img.endswith(".jpg")]
    with torch.no_grad():
        for image_name in images:
            # Free-up unneeded cuda memory
            torch.cuda.empty_cache()
            
            # Load content image
            content_image = utils.load_image(content_folder + image_name)
            content_tensor = utils.itot(content_image).to(device)

            # Generate image
            generated_tensor = net(content_tensor)
            generated_image = utils.ttoi(generated_tensor.detach())
            if (PRESERVE_COLOR):
                generated_image = utils.transfer_color(content_image, generated_image)
            # Save image
            utils.saveimg(generated_image, save_folder + image_name)
示例#6
0
def stylize():
    # Device
    device = ("cuda" if torch.cuda.is_available() else "cpu")

    # Load Transformer Network
    net = transformer.TransformerNetwork()
    net.load_state_dict(torch.load(STYLE_TRANSFORM_PATH))
    net = net.to(device)

    with torch.no_grad():
        while(1):
            torch.cuda.empty_cache()
            print("Stylize Image~ Press Ctrl+C and Enter to close the program")
            content_image_path = input("Enter the image path: ")
            content_image = utils.load_image(content_image_path)
            starttime = time.time()
            content_tensor = utils.itot(content_image).to(device)
            generated_tensor = net(content_tensor)
            generated_image = utils.ttoi(generated_tensor.detach())
            if (PRESERVE_COLOR):
                generated_image = utils.transfer_color(content_image, generated_image)
            print("Transfer Time: {}".format(time.time() - starttime))
            utils.show(generated_image)
            utils.saveimg(generated_image, "helloworld.jpg")
示例#7
0
def train():
    # Seeds
    torch.manual_seed(SEED)
    torch.cuda.manual_seed(SEED)
    np.random.seed(SEED)
    random.seed(SEED)

    # Device
    device = "cuda" if torch.cuda.is_available() else "cpu"

    # Dataset and Dataloader
    transform = transforms.Compose([
        transforms.Resize(TRAIN_IMAGE_SIZE),
        transforms.CenterCrop(TRAIN_IMAGE_SIZE),
        transforms.ToTensor(),
        transforms.Lambda(lambda x: x.mul(255)),
    ])
    train_dataset = datasets.ImageFolder(DATASET_PATH, transform=transform)
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=BATCH_SIZE,
                                               shuffle=True)

    # Load networks
    TransformerNetwork = transformer.TransformerNetwork().to(device)
    VGG = vgg.VGG16().to(device)

    # Get Style Features
    imagenet_neg_mean = (torch.tensor([-103.939, -116.779, -123.68],
                                      dtype=torch.float32).reshape(
                                          1, 3, 1, 1).to(device))
    style_image = utils.load_image(STYLE_IMAGE_PATH)
    style_tensor = utils.itot(style_image).to(device)
    style_tensor = style_tensor.add(imagenet_neg_mean)
    B, C, H, W = style_tensor.shape
    style_features = VGG(style_tensor.expand([BATCH_SIZE, C, H, W]))
    style_gram = {}
    for key, value in style_features.items():
        style_gram[key] = utils.gram(value)

    # Optimizer settings
    optimizer = optim.Adam(TransformerNetwork.parameters(), lr=ADAM_LR)

    # Loss trackers
    content_loss_history = []
    style_loss_history = []
    total_loss_history = []
    batch_content_loss_sum = 0
    batch_style_loss_sum = 0
    batch_total_loss_sum = 0

    # Optimization/Training Loop
    batch_count = 1
    start_time = time.time()
    for epoch in range(NUM_EPOCHS):
        print("========Epoch {}/{}========".format(epoch + 1, NUM_EPOCHS))
        for content_batch, _ in train_loader:
            # Get current batch size in case of odd batch sizes
            curr_batch_size = content_batch.shape[0]

            # Free-up unneeded cuda memory
            torch.cuda.empty_cache()

            # Zero-out Gradients
            optimizer.zero_grad()

            # Generate images and get features
            content_batch = content_batch[:, [2, 1, 0]].to(device)
            generated_batch = TransformerNetwork(content_batch)
            content_features = VGG(content_batch.add(imagenet_neg_mean))
            generated_features = VGG(generated_batch.add(imagenet_neg_mean))

            # Content Loss
            MSELoss = nn.MSELoss().to(device)
            content_loss = CONTENT_WEIGHT * MSELoss(
                generated_features["relu2_2"], content_features["relu2_2"])
            batch_content_loss_sum += content_loss

            # Style Loss
            style_loss = 0
            for key, value in generated_features.items():
                s_loss = MSELoss(utils.gram(value),
                                 style_gram[key][:curr_batch_size])
                style_loss += s_loss
            style_loss *= STYLE_WEIGHT
            batch_style_loss_sum += style_loss.item()

            # Total Loss
            total_loss = content_loss + style_loss
            batch_total_loss_sum += total_loss.item()

            # Backprop and Weight Update
            total_loss.backward()
            optimizer.step()

            # Save Model and Print Losses
            if ((batch_count - 1) % SAVE_MODEL_EVERY
                    == 0) or (batch_count == NUM_EPOCHS * len(train_loader)):
                # Print Losses
                print("========Iteration {}/{}========".format(
                    batch_count, NUM_EPOCHS * len(train_loader)))
                print("\tContent Loss:\t{:.2f}".format(batch_content_loss_sum /
                                                       batch_count))
                print("\tStyle Loss:\t{:.2f}".format(batch_style_loss_sum /
                                                     batch_count))
                print("\tTotal Loss:\t{:.2f}".format(batch_total_loss_sum /
                                                     batch_count))
                print("Time elapsed:\t{} seconds".format(time.time() -
                                                         start_time))

                # Save Model
                checkpoint_path = (SAVE_MODEL_PATH + "checkpoint_" +
                                   str(batch_count - 1) + ".pth")
                torch.save(TransformerNetwork.state_dict(), checkpoint_path)
                print("Saved TransformerNetwork checkpoint file at {}".format(
                    checkpoint_path))

                # Save sample generated image
                sample_tensor = generated_batch[0].clone().detach().unsqueeze(
                    dim=0)
                sample_image = utils.ttoi(sample_tensor.clone().detach())
                sample_image_path = (SAVE_IMAGE_PATH + "sample0_" +
                                     str(batch_count - 1) + ".png")
                utils.saveimg(sample_image, sample_image_path)
                print("Saved sample tranformed image at {}".format(
                    sample_image_path))

                # Save loss histories
                content_loss_history.append(batch_total_loss_sum / batch_count)
                style_loss_history.append(batch_style_loss_sum / batch_count)
                total_loss_history.append(batch_total_loss_sum / batch_count)

            # Iterate Batch Counter
            batch_count += 1

    stop_time = time.time()
    # Print loss histories
    print("Done Training the Transformer Network!")
    print("Training Time: {} seconds".format(stop_time - start_time))
    print("========Content Loss========")
    print(content_loss_history)
    print("========Style Loss========")
    print(style_loss_history)
    print("========Total Loss========")
    print(total_loss_history)

    # Save TransformerNetwork weights
    TransformerNetwork.eval()
    TransformerNetwork.cpu()
    final_path = SAVE_MODEL_PATH + "transformer_weight.pth"
    print("Saving TransformerNetwork weights at {}".format(final_path))
    torch.save(TransformerNetwork.state_dict(), final_path)
    print("Done saving final model")

    # Plot Loss Histories
    if PLOT_LOSS:
        utils.plot_loss_hist(content_loss_history, style_loss_history,
                             total_loss_history)
def train():
    # Seeds
    torch.manual_seed(SEED)
    torch.cuda.manual_seed(SEED)
    np.random.seed(SEED)
    random.seed(SEED)

    # Device
    device = ("cuda" if torch.cuda.is_available() else "cpu")

    # Dataset and Dataloader
    transform = transforms.Compose([
        transforms.Resize(TRAIN_IMAGE_SIZE),
        transforms.CenterCrop(TRAIN_IMAGE_SIZE),
        # transforms.Grayscale(num_output_channels=3),
        transforms.ToTensor(),
        transforms.Lambda(lambda x: x.mul(255))
    ])
    train_dataset = datasets.ImageFolder(DATASET_PATH, transform=transform)
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=BATCH_SIZE,
                                               shuffle=True)

    # Load networks
    TransformerNetwork = transformer.TransformerNetwork().to(device)

    if USE_LATEST_CHECKPOINT is True:
        files = glob.glob(
            "/home/clng/github/fast-neural-style-pytorch/models/checkpoint*")
        if len(files) == 0:
            print("use latest checkpoint but no checkpoint found")
        else:
            files.sort(key=os.path.getmtime, reverse=True)
            latest_checkpoint_path = files[0]
            print("using latest checkpoint %s" % (latest_checkpoint_path))
            params = torch.load(latest_checkpoint_path, map_location=device)
            TransformerNetwork.load_state_dict(params)

    VGG = vgg.VGG19().to(device)

    # Get Style Features
    imagenet_neg_mean = torch.tensor([-103.939, -116.779, -123.68],
                                     dtype=torch.float32).reshape(1, 3, 1,
                                                                  1).to(device)
    style_image = utils.load_image(STYLE_IMAGE_PATH)
    if ADJUST_BRIGHTNESS == "1":
        style_image = cv2.cvtColor(style_image, cv2.COLOR_BGR2GRAY)
        style_image = utils.hist_norm(style_image,
                                      [0, 64, 96, 128, 160, 192, 255],
                                      [0, 0.05, 0.15, 0.5, 0.85, 0.95, 1],
                                      inplace=True)
    elif ADJUST_BRIGHTNESS == "2":
        style_image = cv2.cvtColor(style_image, cv2.COLOR_BGR2GRAY)
        style_image = cv2.equalizeHist(style_image)
    elif ADJUST_BRIGHTNESS == "3":
        a = 1
        # hsv = cv2.cvtColor(style_image, cv2.COLOR_BGR2HSV)
        # hsv = utils.auto_brightness(hsv)
        # style_image = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
    style_image = ensure_three_channels(style_image)
    sname = os.path.splitext(os.path.basename(STYLE_IMAGE_PATH))[0] + "_train"
    cv2.imwrite(
        "/home/clng/datasets/bytenow/neural_styles/{s}.jpg".format(s=sname),
        style_image)

    style_tensor = utils.itot(style_image,
                              max_size=TRAIN_STYLE_SIZE).to(device)

    style_tensor = style_tensor.add(imagenet_neg_mean)
    B, C, H, W = style_tensor.shape
    style_features = VGG(style_tensor.expand([BATCH_SIZE, C, H, W]))
    style_gram = {}
    for key, value in style_features.items():
        style_gram[key] = utils.gram(value)

    # Optimizer settings
    optimizer = optim.Adam(TransformerNetwork.parameters(), lr=ADAM_LR)

    # Loss trackers
    content_loss_history = []
    style_loss_history = []
    total_loss_history = []
    batch_content_loss_sum = 0
    batch_style_loss_sum = 0
    batch_total_loss_sum = 0

    # Optimization/Training Loop
    batch_count = 1
    start_time = time.time()
    for epoch in range(NUM_EPOCHS):
        print("========Epoch {}/{}========".format(epoch + 1, NUM_EPOCHS))
        for content_batch, _ in train_loader:
            # Get current batch size in case of odd batch sizes
            curr_batch_size = content_batch.shape[0]

            # Free-up unneeded cuda memory
            # torch.cuda.empty_cache()

            # Zero-out Gradients
            optimizer.zero_grad()

            # Generate images and get features
            content_batch = content_batch[:, [2, 1, 0]].to(device)
            generated_batch = TransformerNetwork(content_batch)
            content_features = VGG(content_batch.add(imagenet_neg_mean))
            generated_features = VGG(generated_batch.add(imagenet_neg_mean))

            # Content Loss
            MSELoss = nn.MSELoss().to(device)
            content_loss = CONTENT_WEIGHT * \
                MSELoss(generated_features['relu3_4'],
                        content_features['relu3_4'])
            batch_content_loss_sum += content_loss

            # Style Loss
            style_loss = 0
            for key, value in generated_features.items():
                s_loss = MSELoss(utils.gram(value),
                                 style_gram[key][:curr_batch_size])
                style_loss += s_loss
            style_loss *= STYLE_WEIGHT
            batch_style_loss_sum += style_loss.item()

            # Total Loss
            total_loss = content_loss + style_loss
            batch_total_loss_sum += total_loss.item()

            # Backprop and Weight Update
            total_loss.backward()
            optimizer.step()

            # Save Model and Print Losses
            if (((batch_count - 1) % SAVE_MODEL_EVERY == 0)
                    or (batch_count == NUM_EPOCHS * len(train_loader))):
                # Print Losses
                print("========Iteration {}/{}========".format(
                    batch_count, NUM_EPOCHS * len(train_loader)))
                print("\tContent Loss:\t{:.2f}".format(batch_content_loss_sum /
                                                       batch_count))
                print("\tStyle Loss:\t{:.2f}".format(batch_style_loss_sum /
                                                     batch_count))
                print("\tTotal Loss:\t{:.2f}".format(batch_total_loss_sum /
                                                     batch_count))
                print("Time elapsed:\t{} seconds".format(time.time() -
                                                         start_time))

                # Save Model
                checkpoint_path = SAVE_MODEL_PATH + "checkpoint_" + str(
                    batch_count - 1) + ".pth"
                torch.save(TransformerNetwork.state_dict(), checkpoint_path)
                print("Saved TransformerNetwork checkpoint file at {}".format(
                    checkpoint_path))

                # Save sample generated image
                sample_tensor = generated_batch[0].clone().detach().unsqueeze(
                    dim=0)
                sample_image = utils.ttoi(sample_tensor.clone().detach())
                sample_image_path = SAVE_IMAGE_PATH + "sample0_" + str(
                    batch_count - 1) + ".png"
                utils.saveimg(sample_image, sample_image_path)
                print("Saved sample tranformed image at {}".format(
                    sample_image_path))

                # Save loss histories
                content_loss_history.append(batch_total_loss_sum / batch_count)
                style_loss_history.append(batch_style_loss_sum / batch_count)
                total_loss_history.append(batch_total_loss_sum / batch_count)

            # Iterate Batch Counter
            batch_count += 1

    stop_time = time.time()
    # Print loss histories
    print("Done Training the Transformer Network!")
    print("Training Time: {} seconds".format(stop_time - start_time))
    print("========Content Loss========")
    print(content_loss_history)
    print("========Style Loss========")
    print(style_loss_history)
    print("========Total Loss========")
    print(total_loss_history)

    # Save TransformerNetwork weights
    TransformerNetwork.eval()
    TransformerNetwork.cpu()
    final_path = SAVE_MODEL_PATH + STYLE_NAME + ".pth"
    print("Saving TransformerNetwork weights at {}".format(final_path))
    torch.save(TransformerNetwork.state_dict(), final_path)
    print("Done saving final model")

    # Plot Loss Histories
    if (PLOT_LOSS):
        utils.plot_loss_hist(content_loss_history, style_loss_history,
                             total_loss_history)