def __init__(self, config):
        super().__init__()
        self.config = config
        self.output_attentions = self.config.output_attentions
        self.output_hidden_states = self.config.output_hidden_states

        # If bert_model_name is not specified, you will need to specify
        # all of the required parameters for BERTConfig and a pretrained
        # model won't be loaded
        self.bert_model_name = getattr(self.config, "bert_model_name", None)
        self.bert_config = BertConfig.from_dict(
            OmegaConf.to_container(self.config, resolve=True)
        )
        if self.bert_model_name is None:
            self.bert = VisualBERTBase(
                self.bert_config,
                visual_embedding_dim=self.config.visual_embedding_dim,
                embedding_strategy=self.config.embedding_strategy,
                bypass_transformer=self.config.bypass_transformer,
                output_attentions=self.config.output_attentions,
                output_hidden_states=self.config.output_hidden_states,
            )
        else:
            self.bert = VisualBERTBase.from_pretrained(
                self.config.bert_model_name,
                config=self.bert_config,
                cache_dir=os.path.join(
                    get_mmf_cache_dir(), "distributed_{}".format(-1)
                ),
                visual_embedding_dim=self.config.visual_embedding_dim,
                embedding_strategy=self.config.embedding_strategy,
                bypass_transformer=self.config.bypass_transformer,
                output_attentions=self.config.output_attentions,
                output_hidden_states=self.config.output_hidden_states,
            )

        self.vocab_size = self.bert.config.vocab_size

        # TODO: Once omegaconf fixes int keys issue, bring this back
        # See https://github.com/omry/omegaconf/issues/149
        # with omegaconf.open_dict(self.config):
        #     # Add bert config such as hidden_state to our main config
        #     self.config.update(self.bert.config.to_dict())
        if self.bert_model_name is None:
            bert_masked_lm = BertForPreTraining(self.bert.config)
        else:
            bert_masked_lm = BertForPreTraining.from_pretrained(
                self.config.bert_model_name,
                config=self.bert.config,
                cache_dir=os.path.join(
                    get_mmf_cache_dir(), "distributed_{}".format(-1)
                ),
            )
        self.cls = deepcopy(bert_masked_lm.cls)
        self.loss_fct = nn.CrossEntropyLoss(ignore_index=-1)
        self.init_weights()
示例#2
0
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, bert_config_file,
                                     pytorch_dump_path):
    # Initialise PyTorch model
    config = BertConfig.from_json_file(bert_config_file)
    print("Building PyTorch model from configuration: {}".format(str(config)))
    model = BertForPreTraining(config)

    # Load weights from tf checkpoint
    load_tf_weights_in_bert(model, tf_checkpoint_path)

    # Save pytorch-model
    print("Save PyTorch model to {}".format(pytorch_dump_path))
    torch.save(model.state_dict(), pytorch_dump_path)
示例#3
0
 def __init__(self, model_path, vocab: Vocabulary):
     super().__init__(vocab)
     self.pretrained_tokenizer = BertForPreTraining.from_pretrained(
         model_path)
     config = BertConfig.from_pretrained(model_path)
     bert_model = BertForPreTraining(config)
     self.bert = bert_model.bert
     tags = vocab.get_index_to_token_vocabulary("tags")
     num_tags = len(tags)
     constraints = allowed_transitions(constraint_type="BMES", labels=tags)
     self.projection = torch.nn.Linear(768, num_tags)
     self.crf = ConditionalRandomField(num_tags=num_tags,
                                       constraints=constraints,
                                       include_start_end_transitions=False)
示例#4
0
    def load(cls, pretrained_model_name_or_path):

        if os.path.exists(pretrained_model_name_or_path) \
                and "config.json" in pretrained_model_name_or_path \
                and "prediction_head" in pretrained_model_name_or_path:
            config_file = os.path.exists(pretrained_model_name_or_path)
            # a) FARM style
            #TODO validate saving/loading after switching to processor.tasks
            model_file = cls._get_model_file(config_file)
            config = json.load(open(config_file))
            prediction_head = cls(**config)
            logger.info("Loading prediction head from {}".format(model_file))
            prediction_head.load_state_dict(
                torch.load(model_file, map_location=torch.device("cpu")))
        else:
            # b) pytorch-transformers style
            # load weights from bert model
            # (we might change this later to load directly from a state_dict to generalize for other language models)
            bert_with_lm = BertForPreTraining.from_pretrained(
                pretrained_model_name_or_path)

            # init empty head
            head = cls(layer_dims=[bert_with_lm.config.hidden_size, 2],
                       loss_ignore_index=-1,
                       task_name="nextsentence")

            # load weights
            head.feed_forward.feed_forward[0].load_state_dict(
                bert_with_lm.cls.seq_relationship.state_dict())
            del bert_with_lm

        return head
示例#5
0
 def __init__(self, model_path, vocab: Vocabulary):
     super().__init__(vocab)
     config = BertConfig.from_pretrained(model_path)
     bert_model = BertForPreTraining(config)
     self.bert = bert_model.bert
     tags = vocab.get_index_to_token_vocabulary("tags")
     num_tags = len(tags)
     self.projection = torch.nn.Linear(768, num_tags)
     self.metric = SpanBasedF1Measure(vocab, label_encoding='BMES')
示例#6
0
    def _build_word_embedding(self):
        self.bert_config = BertConfig.from_pretrained(self.config.bert_model_name)
        if self.config.pretrained_bert:
            bert_model = BertForPreTraining.from_pretrained(self.config.bert_model_name)
            self.word_embedding = bert_model.bert.embeddings
            self.pooler = bert_model.bert.pooler
            self.pooler.apply(self.init_weights)

        else:
            self.pooler = BertPooler(self.bert_config)
            self.word_embedding = BertEmbeddings(self.bert_config)
示例#7
0
    def __init__(self, config, *args, **kwargs):
        super().__init__()
        self.config = config
        self.bert = MMBTBase(config, *args, **kwargs)
        self.encoder_config = self.bert.encoder_config

        # TODO : Switch to AutoModelForPreTraining after transformers
        # package upgrade to 2.5
        pretraining_module = BertForPreTraining.from_pretrained(
            self.config.bert_model_name,
            config=self.encoder_config,
            cache_dir=os.path.join(get_mmf_cache_dir(), "distributed_{}".format(-1)),
        )

        self.cls = deepcopy(pretraining_module.cls)
        self.loss_fct = nn.CrossEntropyLoss(ignore_index=-1)
        self.tie_weights()
def bertForPreTraining(*args, **kwargs):
    """
    BERT model with pre-training heads.
    This module comprises the BERT model followed by the two pre-training heads
        - the masked language modeling head, and
        - the next sentence classification head.

    Example:
        # Load the tokenizer
        >>> import torch
        >>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False)
        #  Prepare tokenized input
        >>> text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
        >>> tokenized_text = tokenizer.tokenize(text)
        >>> segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
        >>> tokens_tensor = torch.tensor([indexed_tokens])
        >>> segments_tensors = torch.tensor([segments_ids])
        # Load bertForPreTraining
        >>> model = torch.hub.load('huggingface/pytorch-transformers', 'bertForPreTraining', 'bert-base-cased')
        >>> masked_lm_logits_scores, seq_relationship_logits = model(tokens_tensor, segments_tensors)
    """
    model = BertForPreTraining.from_pretrained(*args, **kwargs)
    return model
示例#9
0
    def load(cls, pretrained_model_name_or_path):

        if os.path.exists(pretrained_model_name_or_path) \
                and "config.json" in pretrained_model_name_or_path \
                and "prediction_head" in pretrained_model_name_or_path:
            config_file = os.path.exists(pretrained_model_name_or_path)
            # a) FARM style
            model_file = cls._get_model_file(config_file)
            config = json.load(open(config_file))
            prediction_head = cls(**config)
            logger.info("Loading prediction head from {}".format(model_file))
            prediction_head.load_state_dict(
                torch.load(model_file, map_location=torch.device("cpu")))
        else:
            # b) pytorch-transformers style
            # load weights from bert model
            # (we might change this later to load directly from a state_dict to generalize for other language models)
            bert_with_lm = BertForPreTraining.from_pretrained(
                pretrained_model_name_or_path)

            # init empty head
            head = cls(hidden_size=bert_with_lm.config.hidden_size,
                       vocab_size=bert_with_lm.config.vocab_size,
                       hidden_act=bert_with_lm.config.hidden_act)

            # load weights
            head.dense.load_state_dict(
                bert_with_lm.cls.predictions.transform.dense.state_dict())
            head.LayerNorm.load_state_dict(
                bert_with_lm.cls.predictions.transform.LayerNorm.state_dict())

            head.decoder.load_state_dict(
                bert_with_lm.cls.predictions.decoder.state_dict())
            head.bias.data.copy_(bert_with_lm.cls.predictions.bias)
            del bert_with_lm

        return head
def main():
    parser = ArgumentParser()
    parser.add_argument('--pregenerated_data', type=Path, required=True)
    parser.add_argument('--output_dir', type=Path, required=True)
    parser.add_argument(
        "--bert_model",
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese."
    )
    parser.add_argument("--do_lower_case", action="store_true")
    parser.add_argument(
        "--reduce_memory",
        action="store_true",
        help=
        "Store training data as on-disc memmaps to massively reduce memory usage"
    )

    parser.add_argument("--epochs",
                        type=int,
                        default=3,
                        help="Number of epochs to train for")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--learning_rate",
                        default=3e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    args = parser.parse_args()

    assert args.pregenerated_data.is_dir(), \
        "--pregenerated_data should point to the folder of files made by pregenerate_training_data.py!"

    samples_per_epoch = []
    for i in range(args.epochs):
        epoch_file = args.pregenerated_data / f"epoch_{i}.json"
        metrics_file = args.pregenerated_data / f"epoch_{i}_metrics.json"
        if epoch_file.is_file() and metrics_file.is_file():
            metrics = json.loads(metrics_file.read_text())
            samples_per_epoch.append(metrics['num_training_examples'])
        else:
            if i == 0:
                exit("No training data was found!")
            print(
                f"Warning! There are fewer epochs of pregenerated data ({i}) than training epochs ({args.epochs})."
            )
            print(
                "This script will loop over the available data, but training diversity may be negatively impacted."
            )
            num_data_epochs = i
            break
    else:
        num_data_epochs = args.epochs

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logging.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if args.output_dir.is_dir() and list(args.output_dir.iterdir()):
        logging.warning(
            f"Output directory ({args.output_dir}) already exists and is not empty!"
        )
    args.output_dir.mkdir(parents=True, exist_ok=True)

    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)

    total_train_examples = 0
    for i in range(args.epochs):
        # The modulo takes into account the fact that we may loop over limited epochs of data
        total_train_examples += samples_per_epoch[i % len(samples_per_epoch)]

    num_train_optimization_steps = int(total_train_examples /
                                       args.train_batch_size /
                                       args.gradient_accumulation_steps)
    if args.local_rank != -1:
        num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
        )

    # Prepare model
    model = BertForPreTraining.from_pretrained(args.bert_model)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )
        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]

    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer,
                                       static_loss_scale=args.loss_scale)
        warmup_linear = WarmupLinearSchedule(
            warmup=args.warmup_proportion,
            t_total=num_train_optimization_steps)
    else:
        optimizer = AdamW(optimizer_grouped_parameters,
                          lr=args.learning_rate,
                          warmup=args.warmup_proportion,
                          t_total=num_train_optimization_steps)

    global_step = 0
    logging.info("***** Running training *****")
    logging.info(f"  Num examples = {total_train_examples}")
    logging.info("  Batch size = %d", args.train_batch_size)
    logging.info("  Num steps = %d", num_train_optimization_steps)
    model.train()
    for epoch in range(args.epochs):
        epoch_dataset = PregeneratedDataset(
            epoch=epoch,
            training_path=args.pregenerated_data,
            tokenizer=tokenizer,
            num_data_epochs=num_data_epochs,
            reduce_memory=args.reduce_memory)
        if args.local_rank == -1:
            train_sampler = RandomSampler(epoch_dataset)
        else:
            train_sampler = DistributedSampler(epoch_dataset)
        train_dataloader = DataLoader(epoch_dataset,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)
        tr_loss = 0
        nb_tr_examples, nb_tr_steps = 0, 0
        with tqdm(total=len(train_dataloader), desc=f"Epoch {epoch}") as pbar:
            for step, batch in enumerate(train_dataloader):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, lm_label_ids, is_next = batch
                loss = model(input_ids, segment_ids, input_mask, lm_label_ids,
                             is_next)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                pbar.update(1)
                mean_loss = tr_loss * args.gradient_accumulation_steps / nb_tr_steps
                pbar.set_postfix_str(f"Loss: {mean_loss:.5f}")
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * \
                            warmup_linear.get_lr(
                                global_step, args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

    # Save a trained model
    logging.info("** ** * Saving fine-tuned model ** ** * ")
    model_to_save = model.module if hasattr(
        model, 'module') else model  # Only save the model it-self

    output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
    output_config_file = os.path.join(args.output_dir, CONFIG_NAME)

    torch.save(model_to_save.state_dict(), output_model_file)
    model_to_save.config.to_json_file(output_config_file)
    tokenizer.save_vocabulary(args.output_dir)
示例#11
0
def main():
    parser = argparse.ArgumentParser()

    # Required parameters
    parser.add_argument("--train_corpus",
                        default=None,
                        type=str,
                        required=True,
                        help="The input train corpus.")
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese."
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model checkpoints will be written."
    )

    # Other parameters
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--learning_rate",
                        default=3e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. "
        "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument(
        "--on_memory",
        action='store_true',
        help="Whether to load train samples into memory or use disk")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help=
        "Whether to lower case the input text. True for uncased models, False for cased models."
    )
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumualte before performing a backward/update pass."
    )
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")

    args = parser.parse_args()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train:
        raise ValueError(
            "Training is currently the only implemented execution option. Please set `do_train`."
        )

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
        raise ValueError(
            "Output directory ({}) already exists and is not empty.".format(
                args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)

    #train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        print("Loading Train Dataset", args.train_corpus)
        train_dataset = BERTDataset(args.train_corpus,
                                    tokenizer,
                                    seq_len=args.max_seq_length,
                                    corpus_lines=None,
                                    on_memory=args.on_memory)
        num_train_optimization_steps = int(
            len(train_dataset) / args.train_batch_size /
            args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    # Prepare model
    model = BertForPreTraining.from_pretrained(args.bert_model)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
            )
        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    if args.do_train:
        param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]

        if args.fp16:
            try:
                from apex.optimizers import FP16_Optimizer
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError(
                    "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
                )

            optimizer = FusedAdam(optimizer_grouped_parameters,
                                  lr=args.learning_rate,
                                  bias_correction=False,
                                  max_grad_norm=1.0)
            if args.loss_scale == 0:
                optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
            else:
                optimizer = FP16_Optimizer(optimizer,
                                           static_loss_scale=args.loss_scale)
            warmup_linear = WarmupLinearSchedule(
                warmup=args.warmup_proportion,
                t_total=num_train_optimization_steps)

        else:
            optimizer = BertAdam(optimizer_grouped_parameters,
                                 lr=args.learning_rate,
                                 warmup=args.warmup_proportion,
                                 t_total=num_train_optimization_steps)

    global_step = 0
    if args.do_train:
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_dataset))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)

        if args.local_rank == -1:
            train_sampler = RandomSampler(train_dataset)
        else:
            # TODO: check if this works with current data generator from disk that relies on next(file)
            # (it doesn't return item back by index)
            train_sampler = DistributedSampler(train_dataset)
        train_dataloader = DataLoader(train_dataset,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, lm_label_ids, is_next = batch
                loss = model(input_ids, segment_ids, input_mask, lm_label_ids,
                             is_next)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * \
                            warmup_linear.get_lr(
                                global_step, args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

        # Save a trained model
        logger.info("** ** * Saving fine - tuned model ** ** * ")
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
        if args.do_train:
            torch.save(model_to_save.state_dict(), output_model_file)
            model_to_save.config.to_json_file(output_config_file)
            tokenizer.save_vocabulary(args.output_dir)
示例#12
0
"""
This file contains implementation of transformation tensorflow Bert model to pytorch representation.

"""

import torch
from transformers.modeling_bert import BertConfig, BertForPreTraining, load_tf_weights_in_bert

# This script is used to convert tensorflow bert model to pytorch representation publicly known

# path to dictionary
bert_dir='/mnt/data/xkloco00_pc5/external/multi_cased_L-12_H-768_A-12'

# important files
tf_checkpoint_path=bert_dir+'/'+"bert_model.ckpt"
bert_config_file = bert_dir+'/'+"bert_config.json"
pytorch_dump_path=bert_dir+'/'+"pytorch_model.bin"

config = BertConfig.from_json_file(bert_config_file)
print("Building PyTorch model from configuration: {}".format(str(config)))
model = BertForPreTraining(config)

# Load weights from tf checkpoint
load_tf_weights_in_bert(model, config, tf_checkpoint_path)

# Save pytorch-model
print("Save PyTorch model to {}".format(pytorch_dump_path))
torch.save(model.state_dict(), pytorch_dump_path)