def create_and_check_roberta_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFRobertaForTokenClassification(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} (logits,) = model(inputs) result = { "logits": logits.numpy(), } self.parent.assertListEqual( list(result["logits"].shape), [self.batch_size, self.seq_length, self.num_labels] )
def create_and_check_roberta_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels): config.num_labels = self.num_labels model = TFRobertaForTokenClassification(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids } result = model(inputs) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))