def test_inference_no_head(self): model = TFRobertaModel.from_pretrained("roberta-base") input_ids = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) output = model(input_ids)[0] # compare the actual values for a slice. expected_slice = tf.constant(
def test_model_from_pretrained(self): cache_dir = "/tmp/transformers_test/" for model_name in list( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: model = TFRobertaModel.from_pretrained(model_name, cache_dir=cache_dir) shutil.rmtree(cache_dir) self.assertIsNotNone(model)
def test_inference_no_head(self): model = TFRobertaModel.from_pretrained("roberta-base") input_ids = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) output = model(input_ids)[0] # compare the actual values for a slice. expected_slice = tf.constant( [[[-0.0231, 0.0782, 0.0074], [-0.1854, 0.0540, -0.0175], [0.0548, 0.0799, 0.1687]]] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4))
def test_model_from_pretrained(self): for model_name in list(TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: model = TFRobertaModel.from_pretrained(model_name, cache_dir=CACHE_DIR) self.assertIsNotNone(model)
def test_model_from_pretrained(self): for model_name in TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFRobertaModel.from_pretrained(model_name) self.assertIsNotNone(model)