def create_and_check_t5_model(self, config, input_ids, input_mask, token_labels): model = TFT5Model(config=config) inputs = { "input_ids": input_ids, "decoder_input_ids": input_ids, "decoder_attention_mask": input_mask, } encoder_output, decoder_output = model(inputs) encoder_output, decoder_output = model( input_ids, decoder_attention_mask=input_mask, input_ids=input_ids) result = { "encoder_output": encoder_output.numpy(), "decoder_output": decoder_output.numpy(), } self.parent.assertListEqual( list(result["encoder_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]) self.parent.assertListEqual( list(result["decoder_output"].shape), [self.batch_size, self.seq_length, self.hidden_size])
def test_model_from_pretrained(self): for model_name in ["t5-small"]: model = TFT5Model.from_pretrained(model_name, cache_dir=CACHE_DIR) self.assertIsNotNone(model)
def test_model_from_pretrained(self): cache_dir = "/tmp/transformers_test/" for model_name in ['t5-small']: model = TFT5Model.from_pretrained(model_name, cache_dir=cache_dir) shutil.rmtree(cache_dir) self.assertIsNotNone(model)