示例#1
0
    def test_distributed_length_grouped(self):
        # Get some inputs of random lengths
        lengths = torch.randint(0, 25, (100,)).tolist()
        # Put one bigger than the others to check it ends up in first position
        lengths[32] = 50

        indices_process_0 = list(DistributedLengthGroupedSampler(lengths, 4, 2, 0, lengths=lengths))
        indices_process_1 = list(DistributedLengthGroupedSampler(lengths, 4, 2, 1, lengths=lengths))
        # The biggest element should be first
        self.assertEqual(lengths[indices_process_0[0]], 50)
        # The indices should be a permutation of range(100)
        self.assertEqual(list(sorted(indices_process_0 + indices_process_1)), list(range(100)))
示例#2
0
    def _get_train_sampler(self) -> Optional[torch.utils.data.sampler.Sampler]:
        if isinstance(self.train_dataset,
                      torch.utils.data.IterableDataset) or not isinstance(
                          self.train_dataset, collections.abc.Sized):
            return None

        # Build the sampler.
        if self.args.group_by_length:
            # lengths = self.train_dataset[self.length_field_name] if self.length_field_name is not None else None
            model_input_name = self.tokenizer.model_input_names[
                0] if self.tokenizer is not None else None
            if self.args.world_size <= 1:
                return LengthGroupedSampler(self.train_dataset,
                                            self.args.train_batch_size,
                                            lengths=self.train_seq_lengths,
                                            model_input_name=model_input_name)
            else:
                return DistributedLengthGroupedSampler(
                    self.train_dataset,
                    self.args.train_batch_size,
                    num_replicas=self.args.world_size,
                    rank=self.args.process_index,
                    lengths=self.train_seq_lengths,
                    model_input_name=model_input_name,
                )

        else:
            return super()._get_train_sampler()