示例#1
0
def train():
	parser = argparse.ArgumentParser()
	# load model and tokenizer
	# MODEL_NAME = "bert-base-multilingual-cased"
	MODEL_NAME = args.model_name # "distilbert-base-multilingual-cased"
	tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)

	# load dataset
	train_dataset = load_data("../input/data/train/train.tsv")
	#dev_dataset = load_data("./dataset/train/dev.tsv")
	train_label = train_dataset['label'].values
	#dev_label = dev_dataset['label'].values

	# tokenizing dataset
	tokenized_train = tokenized_dataset(train_dataset, tokenizer)
	#tokenized_dev = tokenized_dataset(dev_dataset, tokenizer)

	# make dataset for pytorch.
	RE_train_dataset = RE_Dataset(tokenized_train, train_label)
	#RE_dev_dataset = RE_Dataset(tokenized_dev, dev_label)

	device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

	# setting model hyperparameter
	bert_config = BertConfig.from_pretrained(MODEL_NAME)
	bert_config.num_labels = 42
	model = BertForSequenceClassification(bert_config) 
	model.parameters
	model.to(device)
  # 사용한 option 외에도 다양한 option들이 있습니다.
  # https://huggingface.co/transformers/main_classes/trainer.html#trainingarguments 참고해주세요.
	training_args = TrainingArguments(
		output_dir=f'./results/{MODEL_NAME}',          # output directory
		save_total_limit=3,              # number of total save model.
		save_steps=500,                 # model saving step.
		# num_train_epochs=4,              # total number of training epochs
		num_train_epochs=5,              # total number of training epochs
		learning_rate=5e-5,               # learning_rate
		per_device_train_batch_size=16,  # batch size per device during training
		#per_device_eval_batch_size=16,   # batch size for evaluation
		warmup_steps=500,                # number of warmup steps for learning rate scheduler
		weight_decay=0.01,               # strength of weight decay
		logging_dir='./logs',            # directory for storing logs
		logging_steps=100,              # log saving step.
		#evaluation_strategy='steps', # evaluation strategy to adopt during training
									# `no`: No evaluation during training.
									# `steps`: Evaluate every `eval_steps`.
									# `epoch`: Evaluate every end of epoch.
		#eval_steps = 500,            # evaluation step.
		#load_best_model_at_end = True, # When set to True, the parameters save_strategy and save_steps will be ignored and the model will be saved after each evaluation.
		)
	trainer = Trainer(
		model=model,                         # the instantiated 🤗 Transformers model to be trained
		args=training_args,                  # training arguments, defined above
		train_dataset=RE_train_dataset,         # training dataset
		#eval_dataset=RE_dev_dataset,             # evaluation dataset
		#compute_metrics=compute_metrics         # define metrics function
	)
	# train model
	trainer.train()
 def create_and_check_for_sequence_classification(
     self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
 ):
     config.num_labels = self.num_labels
     model = BertForSequenceClassification(config)
     model.to(torch_device)
     model.eval()
     result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
     self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
 def create_and_check_bert_for_sequence_classification(
         self, config, input_ids, token_type_ids, input_mask,
         sequence_labels, token_labels, choice_labels):
     config.num_labels = self.num_labels
     model = BertForSequenceClassification(config)
     model.to(torch_device)
     model.eval()
     result = model(input_ids,
                    attention_mask=input_mask,
                    token_type_ids=token_type_ids,
                    labels=sequence_labels)
     self.parent.assertListEqual(list(result["logits"].size()),
                                 [self.batch_size, self.num_labels])
     self.check_loss_output(result)
示例#4
0
def main(device='lazy', full_size=False):
    """
    Load model to specified device. Ensure that any backends have been initialized by this point.

    :param device: name of device to load tensors to
    :param full_size: if true, use a full pretrained bert-base-cased model instead of a smaller variant
    """
    torch.manual_seed(0)

    tokenized_datasets = tokenize_dataset(load_dataset('imdb'))
    small_train_dataset = tokenized_datasets['train'].shuffle(seed=42) \
        .select(range(2))

    train_dataloader = DataLoader(small_train_dataset, shuffle=True,
                                  batch_size=8)
    if full_size:
        model = BertForSequenceClassification.from_pretrained('bert-base-cased',
                                                              num_labels=2)
    else:
        configuration = BertConfig(
            vocab_size=28996,
            hidden_size=32,
            num_hidden_layers=1,
            num_attention_heads=2,
            intermediate_size=32,
            hidden_act='gelu',
            hidden_dropout_prob=0.0,
            attention_probs_dropout_prob=0.0,
            max_position_embeddings=512,
            layer_norm_eps=1.0e-05,
        )
        model = BertForSequenceClassification(configuration)

    model.to(device)

    num_epochs = 3
    num_training_steps = num_epochs * len(train_dataloader)
    losses = train(model, num_epochs, num_training_steps, train_dataloader, device)

    # Get debug information from LTC
    if 'torch_mlir.reference_lazy_backend._REFERENCE_LAZY_BACKEND' in sys.modules:
        computation = lazy_backend.get_latest_computation()
        if computation:
            print(computation.debug_string())

    print('Loss: ', losses)

    return model, losses
def load(args, checkpoint_dir):
    state_dict = torch.load(os.path.join(checkpoint_dir, 'checkpoint.pth'))
    from collections import OrderedDict
    new_state_dict = OrderedDict()
    for k, v in state_dict.items():
        if 'module' in k:
            namekey = k[7:]  # remove `module.`
        else:
            namekey = k
        new_state_dict[namekey] = v

    if args.model_type == 'bert':
        config = BertConfig.from_json_file(os.path.join(checkpoint_dir, 'config.bin'))
        model = BertForSequenceClassification(config)
        model.load_state_dict(new_state_dict)
    elif args.model_type == 'cnn':
        model = CNNModel(n_vocab=args.vocab_size, embed_size=args.embed_size, num_classes=args.num_labels,
                         num_filters=args.num_filters, filter_sizes=args.filter_sizes, device=args.device)
        model.load_state_dict(new_state_dict)
    elif args.model_type == 'lstm':
        model = LSTMModel(n_vocab=args.vocab_size, embed_size=args.embed_size, num_classes=args.num_labels,
                          hidden_size=args.hidden_size, device=args.device)
        model.load_state_dict(new_state_dict)
    elif args.model_type == 'char-cnn':
        model = CharCNN(num_features=args.num_features, num_classes=args.num_labels)
        model.load_state_dict(new_state_dict)
    else:
        raise ValueError('model type is not found!')

    return model.to(args.device)
示例#6
0
 def __init__(
         self,
         model: BertForSequenceClassification,
         tokenizer: BertTokenizer,
         max_length: int
 ):
     """
     :param model: pre trained `BertForSequenceClassification` model
     :param tokenizer: tokenizer for the model
     :param max_length: maximum tokens in a sequence for the model
     """
     self.model = model
     self.tokenizer = tokenizer
     self.max_length = max_length
     self._set_up_device()
     model.to(self.device)
示例#7
0
 def __init__(self,
              model: BertForSequenceClassification,
              tokenizer: BertTokenizer,
              seed: int = 100):
     """
     :param model: `BertForSequenceClassification` model to train, num_labels should be set to 3
     :param tokenizer: tokenizer for the model
     :param seed: seed for reproducible results
     """
     random.seed(seed)
     np.random.seed(seed)
     torch.manual_seed(seed)
     self._set_up_device()
     self.model = model
     model.cuda()
     model.to(self.device)
     self.tokenizer = tokenizer
def main(args):
    """
    주어진 dataset tsv 파일과 같은 형태일 경우 inference 가능한 코드입니다.
    """
    seed_everything(args.seed)

    use_cuda = torch.cuda.is_available()
    device = torch.device("cuda" if use_cuda else "cpu")

    # load tokenizer
    TOK_NAME = args.token
    if TOK_NAME == "monologg/kobert":
        tokenizer = KoBertTokenizer.from_pretrained(TOK_NAME)
    else:
        tokenizer = AutoTokenizer.from_pretrained(TOK_NAME)

    # load my model
    bert_config = BertConfig.from_pretrained(TOK_NAME)
    bert_config.num_labels = args.num_labels
    bert_config.num_hidden_layers = args.num_hidden_layers
    model = BertForSequenceClassification(bert_config)

    model_dir = os.path.join(args.model_dir, args.name)
    model_path = os.path.join(model_dir, 'best.pth')

    # load test datset
    test_dataset_dir = "/opt/ml/input/data/test/test.tsv"
    test_dataset, test_label = load_test_dataset(test_dataset_dir, model,
                                                 tokenizer, args)
    test_dataset = RE_Dataset(test_dataset, test_label)

    model.load_state_dict(torch.load(model_path, map_location=device))
    model.to(device)

    # predict answer
    batch_size = args.batch_size
    print("Inference Start!!!")
    pred_answer = inference(model, test_dataset, device, batch_size)
    # make csv file with predicted answer
    # 아래 directory와 columns의 형태는 지켜주시기 바랍니다.

    output = pd.DataFrame(pred_answer, columns=['pred'])
    save_dir = os.path.join(args.output_dir, args.name)
    os.makedirs(save_dir, exist_ok=True)
    output.to_csv(os.path.join(save_dir, f'{args.name}.csv'), index=False)
示例#9
0
文件: bert.py 项目: ghajduk3/COLI
def test_classifier(model: BertForSequenceClassification,
                    dataset: TensorDataset, batch_size: int):

    device = select_device()

    prediction_dataloader = DataLoader(dataset,
                                       sampler=SequentialSampler(dataset),
                                       batch_size=batch_size)

    print("")
    print("Running Prediction...")

    model.to(device)

    model.eval()

    predictions, true_labels = [], []

    for batch in prediction_dataloader:

        b_input_ids = batch[0].to(device)
        b_input_mask = batch[1].to(device)
        b_labels = batch[2]

        with torch.no_grad():

            outputs = model(b_input_ids,
                            token_type_ids=None,
                            attention_mask=b_input_mask)

        logits = outputs.logits

        logits = logits.detach().cpu().numpy()
        label_ids = b_labels.numpy()

        #predictions.append(logits)
        predictions.extend(list(np.argmax(logits, axis=1).flatten()))
        true_labels.extend(list(label_ids))

    print('DONE.')

    return predictions, true_labels
示例#10
0
def inference_no_args(
    data: TensorDataset,
    loader: DataLoader,
    logger: Logger,
    model: BertForSequenceClassification,
    batch_size: int,
) -> List[float]:
    device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
    predictions = []
    states = []
    logger.info("***** Running inference {} *****".format(""))
    logger.info("  Num examples = %d", len(data))
    logger.info("  Batch size = %d", batch_size)
    model.to(device)
    model.eval()
    for batch in tqdm(loader, desc="Inference"):
        batch = tuple(t.to(device) for t in batch)
        logits, state = model.forward(input_ids=batch[0], attention_mask=batch[1], token_type_ids=batch[2],
                                      output_hidden_states=True)
        predictions.extend(logits.cpu())
        states.extend(state[-1][:, 0, :].cpu())
    return predictions, states
def load(args, checkpoint_dir):
    state_dict = torch.load(os.path.join(checkpoint_dir, 'checkpoint.pth'))
    from collections import OrderedDict
    new_state_dict = OrderedDict()
    for k, v in state_dict.items():
        if 'module' in k:
            namekey = k[7:]  # remove `module.`
        else:
            namekey = k
        new_state_dict[namekey] = v

    if args.model_type == 'bert':
        config = BertConfig.from_json_file(
            os.path.join(checkpoint_dir, 'config.bin'))
        model = BertForSequenceClassification(config)
        model.load_state_dict(new_state_dict)
    elif args.model_type == 'bow':
        model = BOWModel(new_state_dict['embedding.weight'],
                         n_vocab=args.vocab_size,
                         embed_size=args.embed_size,
                         hidden_size=args.hidden_size,
                         num_classes=args.num_labels)
        model.load_state_dict(new_state_dict)
    elif args.model_type == 'decom_att':
        model = DecompAttentionModel(args.word_mat,
                                     n_vocab=args.vocab_size,
                                     embed_size=args.embed_size,
                                     hidden_size=args.hidden_size,
                                     num_classes=args.num_labels)
        model.load_state_dict(new_state_dict)
    elif args.model_type == 'esim':
        model = ESIM(vocab_size=args.vocab_size,
                     embedding_dim=args.embed_size,
                     hidden_size=args.hidden_size,
                     embeddings=None,
                     padding_idx=0,
                     dropout=0.1,
                     num_classes=args.num_labels,
                     device=args.device)
        model.load_state_dict(new_state_dict)
    else:
        raise ValueError('model type is not found!')

    return model.to(args.device)
示例#12
0
def model_infer(config,test_load,k):
    
    print("***********load model weight*****************")

    model_config = model_config = BertConfig()
    model_config.vocab_size = len(pd.read_csv('../user_data/vocab',names=["score"]))
    
    model = BertForSequenceClassification(config=model_config)
    model.load_state_dict(torch.load('../user_data/save_model/{}_best_model.pth.tar'.format(config.model_name))['status'])
    model = model.to(config.device)

    print("***********make predict for test file*****************")

    
    model.eval()
    predict_all = []

    with torch.no_grad():
        for batch, (input_ids, token_type_ids, attention_mask, label) in enumerate(test_load):
            input_ids = input_ids.to(config.device)
            attention_mask = attention_mask.to(config.device)
            token_type_ids = token_type_ids.to(config.device)

            outputs = model(input_ids=input_ids, attention_mask=attention_mask,
                            token_type_ids=token_type_ids)

            logits = outputs.logits
            pred_pob = torch.nn.functional.softmax(logits, dim=1)[:, 1]
            predict_all.extend(list(pred_pob.detach().cpu().numpy()))
    
#     submit_result(predict)
    if k==0:
        df=pd.DataFrame(predict_all,columns=["{}_socre".format(k+1)])
        df.to_csv('./{}_result.csv'.format(config.model_name),index=False)
    else:
        df=pd.read_csv('./{}_result.csv'.format(config.model_name))
        df["{}_socre".format(k+1)] = predict_all
        df.to_csv('./{}_result.csv'.format(config.model_name),index=False)
    
    print("***********done*****************")
示例#13
0
 def __init__(
     self,
     args: argparse.ArgumentParser,
     model: BertForSequenceClassification = None,
     data_collator: Optional[DataCollator] = None,
     train_dataset: Optional[Dataset] = None,
     eval_dataset: Optional[Dataset] = None,
     compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None,
     prediction_loss_only=False,
 ):
     super(Trainer, self).__init__()
     self.args = args
     self.device = torch.device(
         "cuda" if torch.cuda.is_available() else "cpu")
     self.model = model.to(self.device)
     self.train_dataset = train_dataset
     self.eval_dataset = eval_dataset
     self.compute_metrics = compute_metrics
     self.prediction_loss_only = prediction_loss_only
     if data_collator is not None:
         self.data_collator = data_collator
     else:
         self.data_collator = DefaultDataCollator()
示例#14
0
# Define models
bert_config = BertConfig.from_json_file('bert_config/bert_config.json')
bert_config_T3 = BertConfig.from_json_file('bert_config/bert_config_T3.json')

bert_config.output_hidden_states = True
bert_config_T3.output_hidden_states = True

teacher_model = BertForSequenceClassification(bert_config)  #, num_labels = 2
# Teacher should be initialized with pre-trained weights and fine-tuned on the downstream task.
# For the demonstration purpose, we omit these steps here

student_model = BertForSequenceClassification(
    bert_config_T3)  #, num_labels = 2

teacher_model.to(device=device)
student_model.to(device=device)


# Define Dict Dataset
class DictDataset(Dataset):
    def __init__(self, all_input_ids, all_attention_mask, all_labels):
        assert len(all_input_ids) == len(all_attention_mask) == len(all_labels)
        self.all_input_ids = all_input_ids
        self.all_attention_mask = all_attention_mask
        self.all_labels = all_labels

    def __getitem__(self, index):
        return {
            'input_ids': self.all_input_ids[index],
            'attention_mask': self.all_attention_mask[index],
示例#15
0
    label = torch.tensor(data=label).type(torch.LongTensor)
    return input_ids, token_type_ids, attention_mask, label


print("***********load test data*****************")

config = roBerta_Config()
vocab = Vocab()
train_data, valid_data, test_data = vocab.get_train_dev_test()
test_dataset = BuildDataSet(test_data)
test_load = DataLoader(dataset=test_dataset,
                       batch_size=config.batch_size,
                       shuffle=False,
                       collate_fn=collate_fn)

print("***********load model weight*****************")

model_config = BertConfig.from_pretrained(
    pretrained_model_name_or_path="bert_source/bert_config.json")
model = BertForSequenceClassification(config=model_config)
model.load_state_dict(torch.load('save_bert/best_model.pth.tar'))
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
config.device = device

print("***********make predict for test file*****************")

predict = model_infer(model, config, test_load)
submit_result(predict)
print("***********done*****************")
示例#16
0
class AdapterCompositionTest(unittest.TestCase):
    def setUp(self):
        self.model = BertForSequenceClassification(BertConfig())
        self.model.add_adapter("a")
        self.model.add_adapter("b")
        self.model.add_adapter("c")
        self.model.add_adapter("d")
        self.model.to(torch_device)
        self.model.train()

    def training_pass(self):
        inputs = {}
        inputs["input_ids"] = ids_tensor((1, 128), 1000)
        inputs["labels"] = torch.ones(1, dtype=torch.long)
        loss = self.model(**inputs).loss
        loss.backward()

    def batched_training_pass(self):
        inputs = {"input_ids": ids_tensor((4, 128), 1000), "labels": torch.ones(4, dtype=torch.long)}
        loss = self.model(**inputs).loss
        loss.backward()

    def test_simple_split(self):
        # pass over split setup
        self.model.set_active_adapters(Split("a", "b", 64))

        self.training_pass()

    def test_stacked_split(self):
        # split into two stacks
        self.model.set_active_adapters(Split(Stack("a", "b"), Stack("c", "d"), split_index=64))

        self.training_pass()

    def test_stacked_fusion(self):
        self.model.add_adapter_fusion(Fuse("b", "d"))

        # fuse two stacks
        self.model.set_active_adapters(Fuse(Stack("a", "b"), Stack("c", "d")))

        self.training_pass()

    def test_mixed_stack(self):
        self.model.add_adapter_fusion(Fuse("a", "b"))

        self.model.set_active_adapters(Stack("a", Split("c", "d", split_index=64), Fuse("a", "b")))

        self.training_pass()

    def test_nested_split(self):
        # split into two stacks
        self.model.set_active_adapters(Split(Split("a", "b", split_index=32), "c", split_index=64))

        self.training_pass()

    def test_parallel(self):
        self.model.set_active_adapters(Parallel("a", "b", "c", "d"))

        inputs = {}
        inputs["input_ids"] = ids_tensor((1, 128), 1000)
        logits = self.model(**inputs).logits
        self.assertEqual(logits.shape, (4, 2))

    def test_nested_parallel(self):
        self.model.set_active_adapters(Stack("a", Parallel(Stack("b", "c"), "d")))

        inputs = {}
        inputs["input_ids"] = ids_tensor((1, 128), 1000)
        logits = self.model(**inputs).logits
        self.assertEqual(logits.shape, (2, 2))

    def test_batch_split(self):
        self.model.set_active_adapters(BatchSplit("a", "b", "c", batch_sizes=[1, 1, 2]))
        self.batched_training_pass()

    def test_batch_split_int(self):
        self.model.set_active_adapters(BatchSplit("a", "b", batch_sizes=2))
        self.batched_training_pass()

    def test_nested_batch_split(self):
        self.model.set_active_adapters(Stack("a", BatchSplit("b", "c", batch_sizes=[2, 2])))
        self.batched_training_pass()

    def test_batch_split_invalid(self):
        self.model.set_active_adapters(BatchSplit("a", "b", batch_sizes=[3, 4]))
        with self.assertRaises(IndexError):
            self.batched_training_pass()

    def test_batch_split_equivalent(self):
        self.model.set_active_adapters("a")
        self.model.eval()
        input_ids = ids_tensor((2, 128), 1000)
        output_a = self.model(input_ids[:1])

        self.model.set_active_adapters("b")
        output_b = self.model(input_ids[1:2])

        self.model.set_active_adapters(BatchSplit("a", "b", batch_sizes=[1, 1]))
        output = self.model(input_ids)

        self.assertTrue(torch.allclose(output_a[0], output[0][0], atol=1e-6))
        self.assertTrue(torch.allclose(output_b[0], output[0][1], atol=1e-6))
示例#17
0
class Classifier:
    """The Classifier"""

    #############################################
    def __init__(self,
                 train_batch_size=16,
                 eval_batch_size=8,
                 max_length=128,
                 lr=2e-5,
                 eps=1e-6,
                 n_epochs=11):
        """

        :param train_batch_size: (int) Training batch size
        :param eval_batch_size: (int) Batch size while using the `predict` method.
        :param max_length: (int) Maximum length for padding
        :param lr: (float) Learning rate
        :param eps: (float) Adam optimizer epsilon parameter
        :param n_epochs: (int) Number of epochs to train
        """
        # model parameters
        self.train_batch_size = train_batch_size
        self.eval_batch_size = eval_batch_size
        self.max_length = max_length
        self.lr = lr
        self.eps = eps
        self.n_epochs = n_epochs

        # Information to be set or updated later
        self.trainset = None
        self.categories = None
        self.labels = None
        self.model = None

        # Tokenizer
        self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

        # The model #
        #   We first need to specify some configurations to the model
        configs = BertConfig.from_pretrained(
            'bert-base-uncased', num_labels=3,
            type_vocab_size=8)  # BERT configuration
        self.model = BertForSequenceClassification(configs)

        #   We are changing the header classifier of the model (Which is initially a simple fully connect layer layer)
        clf = Net()
        self.model.classifier = clf

        self.model.to(
            device
        )  # putting the model on GPU if available otherwise device is CPU

    def preprocess(self, sentences):
        """
        The preprocessing function
        :param sentences: List of all sentences to be given at once.
        :return: List of preprocessed sentences.
        """

        preprocessed = []
        for sentence in tqdm(sentences):

            assert isinstance(sentence, str)
            doc = nlp(str(sentence))
            tokens = []
            for token in doc:
                if (not token.is_punct) or (token.text not in [
                        ',', '-', '.', "'", '!'
                ]):  # Some punctuations can be interesting for BERT
                    tokens.append(token.text)
            tokens = (' '.join(tokens)).lower().replace(" '", "'")
            preprocessed.append(tokens)

        return preprocessed

    def question(self, category):
        """
        Computes the questions corresponding to each category
        :param category: (str) The category/aspect
        :return: (str) computed question using the QA-M task
        """
        assert category in self.categories

        if category == 'AMBIENCE#GENERAL':
            return "what do you think of the ambience of it ?"
        elif category == 'DRINKS#PRICES' or category == 'FOOD#PRICES' or category == 'RESTAURANT#PRICES':
            return "what do you think of the price of it ?"
        elif category == 'DRINKS#QUALITY' or category == 'FOOD#QUALITY':
            return "what do you think of the quality of it ?"
        elif category == 'DRINKS#STYLE_OPTIONS':
            return "what do you think of drinks ?"
        elif category == 'FOOD#STYLE_OPTIONS':
            return "what do you think of the food ?"
        elif category == 'LOCATION#GENERAL':
            return "what do you think of the location of it ?"
        elif category == 'RESTAURANT#GENERAL' or category == 'RESTAURANT#MISCELLANEOUS':
            return "what do you think of the restaurant ?"
        elif category == 'SERVICE#GENERAL':
            return "what do you think of the service of it ?"

    def train(self, trainfile):
        """Trains the classifier model on the training set stored in file trainfile"""

        # Loading the data and splitting up its information in lists
        print("\n   Loading training data...")
        trainset = np.genfromtxt(trainfile,
                                 delimiter='\t',
                                 dtype=str,
                                 comments=None)
        self.trainset = trainset
        n = len(trainset)
        targets = trainset[:, 0]
        categories = trainset[:, 1]
        self.labels = list(Counter(targets).keys())  # label names
        self.categories = list(Counter(categories).keys())  # category names
        start_end = [[int(x) for x in w.split(':')] for w in trainset[:, 3]]
        # target words
        words_of_interest = [
            trainset[:, 4][i][start_end[i][0]:start_end[i][1]]
            for i in range(n)
        ]
        # sentences to be classified
        sentences = [str(s) for s in trainset[:, 4]]

        # Preprocessing the text data
        print("   Preprocessing the text data...")
        sentences = self.preprocess(sentences)

        # Computing question sequences
        print("   Computing questions...")
        questions = [self.question(categories[i]) for i in tqdm(range(n))]

        # Tokenization
        attention_masks = []
        input_ids = []
        token_type_ids = []
        labels = []
        for word, question, answer in zip(words_of_interest, questions,
                                          sentences):
            encoded_dict = self.tokenizer.encode_plus(
                answer,
                question + ' ' + word.lower(),
                add_special_tokens=True,  # Add '[CLS]' and '[SEP]' tokens
                max_length=self.max_length,  # Pad & truncate all sequences
                pad_to_max_length=True,
                return_attention_mask=True,  # Construct attention masks
                return_tensors='pt',  # Return pytorch tensors.
            )
            attention_masks.append(encoded_dict['attention_mask'])
            input_ids.append(encoded_dict['input_ids'])
            token_type_ids.append(encoded_dict['token_type_ids'])
        attention_masks = torch.cat(attention_masks, dim=0)
        input_ids = torch.cat(input_ids, dim=0)
        token_type_ids = torch.cat(token_type_ids, dim=0)

        # Converting polarities into integers (0: positive, 1: negative, 2: neutral)
        for target in targets:
            if target == 'positive':
                labels.append(0)
            elif target == 'negative':
                labels.append(1)
            elif target == 'neutral':
                labels.append(2)
        labels = torch.tensor(labels)

        # Pytorch data iterators
        train_data = TensorDataset(input_ids, attention_masks, token_type_ids,
                                   labels)
        train_sampler = RandomSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      batch_size=self.train_batch_size,
                                      sampler=train_sampler)

        # Optimizer and scheduler (we are using a linear scheduler without warm up)
        no_decay = ['bias', 'gamma',
                    'beta']  # These parameters are not going to be decreased
        optimizer_parameters = [{
            'params': [
                p for n, p in self.model.named_parameters()
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params': [
                p for n, p in self.model.named_parameters()
                if any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.0
        }]
        optimizer = AdamW(optimizer_parameters, lr=self.lr, eps=self.eps)
        total_steps = len(train_dataloader) * self.n_epochs
        scheduler = get_linear_schedule_with_warmup(
            optimizer, num_warmup_steps=0, num_training_steps=total_steps)

        # Training
        initial_t0 = time.time()
        for epoch in range(self.n_epochs):
            print('\n   ======== Epoch %d / %d ========' %
                  (epoch + 1, self.n_epochs))
            print('   Training...\n')
            t0 = time.time()
            total_train_loss = 0

            self.model.train()
            for step, batch in enumerate(train_dataloader):
                batch = tuple(t.to(device) for t in batch)
                input_ids_, input_mask_, segment_ids_, label_ids_ = batch

                self.model.zero_grad()
                loss, _ = self.model(input_ids_,
                                     token_type_ids=segment_ids_,
                                     attention_mask=input_mask_,
                                     labels=label_ids_)
                total_train_loss += loss.item()

                loss.backward()
                # clip gradient norm
                torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)

                optimizer.step()
                scheduler.step()

            avg_train_loss = total_train_loss / len(train_dataloader)
            training_time = format_time(time.time() - t0)
            # print("     Average training loss: {0:.2f}".format(avg_train_loss))
            print("     Training epoch duration: {:}".format(training_time))
        print("     Total training time: {:}".format(
            format_time(time.time() - initial_t0)))

    def predict(self, datafile):
        """Predicts class labels for the input instances in file 'datafile'
        Returns the list of predicted labels
        """

        # Loading the data and splitting up its information in lists
        evalset = np.genfromtxt(datafile,
                                delimiter='\t',
                                dtype=str,
                                comments=None)
        m = len(evalset)
        categories = evalset[:, 1]
        start_end = [[int(x) for x in w.split(':')] for w in evalset[:, 3]]
        # target words
        words_of_interest = [
            evalset[:, 4][i][start_end[i][0]:start_end[i][1]] for i in range(m)
        ]
        # sentences to be classified
        sentences = [str(s) for s in evalset[:, 4]]

        # Preprocessing the text data
        print("\n   Preprocessing the text data...")
        sentences = self.preprocess(sentences)

        # Computing question sequences
        print("   Computing questions...")
        questions = [self.question(categories[i]) for i in tqdm(range(m))]

        # Tokenization
        attention_masks = []
        input_ids = []
        token_type_ids = []
        for word, question, answer in zip(words_of_interest, questions,
                                          sentences):
            encoded_dict = self.tokenizer.encode_plus(
                answer,
                question + ' ' + word.lower(),
                add_special_tokens=True,  # Add '[CLS]' and '[SEP]'
                max_length=self.max_length,  # Pad & truncate all sequences
                pad_to_max_length=True,
                return_attention_mask=True,  # Construct attention masks
                return_tensors='pt',  # Return pytorch tensors.
            )
            attention_masks.append(encoded_dict['attention_mask'])
            input_ids.append(encoded_dict['input_ids'])
            token_type_ids.append(encoded_dict['token_type_ids'])
        attention_masks = torch.cat(attention_masks, dim=0)
        input_ids = torch.cat(input_ids, dim=0)
        token_type_ids = torch.cat(token_type_ids, dim=0)

        # Pytorch data iterators
        eval_data = TensorDataset(input_ids, attention_masks, token_type_ids)
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     batch_size=self.eval_batch_size,
                                     sampler=eval_sampler)

        # Prediction
        named_labels = []
        self.model.eval()
        for batch in eval_dataloader:
            batch = tuple(t.to(device) for t in batch)
            input_ids, input_mask, segment_ids = batch

            with torch.no_grad():
                logits = self.model(input_ids,
                                    token_type_ids=segment_ids,
                                    attention_mask=input_mask)[0]

            logits = softmax(logits, dim=-1)
            logits = logits.detach().cpu().numpy()
            outputs = np.argmax(logits, axis=1)

            # converting integer labels into named labels
            for label in outputs:
                if label == 0:
                    named_labels.append('positive')
                elif label == 1:
                    named_labels.append('negative')
                elif label == 2:
                    named_labels.append('neutral')

        return np.array(named_labels)
def train_process(config, train_load, train_sampler, model_name):
    # load source bert weights
    model_config = BertConfig.from_pretrained(
        pretrained_model_name_or_path="../user_data/bert_source/{}_config.json"
        .format(model_name))
    # model_config = BertConfig()
    model_config.vocab_size = len(
        pd.read_csv('../user_data/vocab', names=["score"]))
    model = BertForSequenceClassification(config=model_config)

    checkpoint = torch.load(
        '../user_data/save_bert/{}_checkpoint.pth.tar'.format(model_name),
        map_location=torch.device('cpu'))
    model.load_state_dict(checkpoint['status'], strict=False)
    print('***********load pretrained mlm {} weight*************'.format(
        model_name))

    for param in model.parameters():
        param.requires_grad = True

    # 4) 封装之前要把模型移到对应的gpu
    model = model.to(config.device)

    no_decay = ["bias", "LayerNorm.weight"]

    optimizer_grouped_parameters = [
        {
            "params": [
                p for n, p in model.named_parameters()
                if not any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            config.weight_decay,
        },
        {
            "params": [
                p for n, p in model.named_parameters()
                if any(nd in n for nd in no_decay)
            ],
            "weight_decay":
            0.0
        },
    ]
    optimizer = AdamW(optimizer_grouped_parameters, lr=config.learning_rate)

    #     t_total = len(train_load) * config.num_train_epochs
    #     scheduler = get_linear_schedule_with_warmup(
    #         optimizer, num_warmup_steps=t_total * config.warmup_proportion, num_training_steps=t_total
    #     )

    cudnn.benchmark = True

    if torch.cuda.device_count() > 1:
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        # 5)封装
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[config.local_rank])

    model.train()
    if config.fgm:
        fgm = FGM(model)

    for epoch in range(config.num_train_epochs):
        train_sampler.set_epoch(epoch)
        torch.cuda.empty_cache()

        for batch, (input_ids, token_type_ids, attention_mask,
                    label) in enumerate(train_load):
            input_ids = input_ids.cuda(config.local_rank, non_blocking=True)
            attention_mask = attention_mask.cuda(config.local_rank,
                                                 non_blocking=True)
            token_type_ids = token_type_ids.cuda(config.local_rank,
                                                 non_blocking=True)
            label = label.cuda(config.local_rank, non_blocking=True)

            outputs = model(input_ids=input_ids,
                            attention_mask=attention_mask,
                            token_type_ids=token_type_ids,
                            labels=label)

            loss = outputs.loss
            model.zero_grad()
            loss.backward()
            #             torch.nn.utils.clip_grad_norm_(model.parameters(), config.max_grad_norm)

            if config.fgm:
                fgm.attack()  # 在embedding上添加对抗扰动
                loss_adv = model(input_ids=input_ids,
                                 attention_mask=attention_mask,
                                 token_type_ids=token_type_ids,
                                 labels=label).loss
                loss_adv.backward()  # 反向传播,并在正常的grad基础上,累加对抗训练的梯度
                fgm.restore()  # 恢复embedding参数

            optimizer.step()
        #             scheduler.step()

        # dev_auc = model_evaluate(config, model, valid_load)

        # 同步各个进程的速度,计算分布式loss
        torch.distributed.barrier()
        # reduce_dev_auc = reduce_auc(dev_auc, config.nprocs).item()

        # if reduce_dev_auc > best_dev_auc:
        #     best_dev_auc = reduce_dev_auc
        #     is_best = True

        now = strftime("%Y-%m-%d %H:%M:%S", localtime())
        msg = 'model_name:{},time:{},epoch:{}/{}'

        if config.local_rank in [0, -1]:
            print(
                msg.format(model_name, now, epoch + 1,
                           config.num_train_epochs))
            checkpoint = {"status": model.module.state_dict()}
            torch.save(
                checkpoint, '../user_data/save_model' + os.sep +
                '{}_checkpoint.pth.tar'.format(model_name))
            del checkpoint

    torch.distributed.barrier()
示例#19
0
model = BertModel.from_pretrained(
    './model/bert_pre58_4/pytorch_model.bin', config=config)

model.cuda()
model = torch.nn.DataParallel(model, device_ids=[0, 1, 2, 3]).cuda()
model.to(device)

save_offset = 12

supreme_config = BertConfig.from_json_file('./dataset/bert_config.json')
supreme_config.num_labels = len(myDataset.cls_label_2_id)
model_ = BertForSequenceClassification(config=supreme_config)

model_.cuda()
model_ = torch.nn.DataParallel(model_, device_ids=[0, 1, 2, 3]).cuda()
model_.to(device)

criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam([{'params': model.parameters(), 'lr': 5e-5},
                        {'params': textCNN.parameters(), 'lr': 1e-3}], lr=1e-3, weight_decay=0.)

# %%
losses = []

num_epochs = 30
for epoch in range(num_epochs):
    train_count = 0
    train_loss = 0
    train_acc = []
    train_iter = tqdm(dataiter)
    for sentences, attn_masks, std_ids, _, _ in train_iter:
示例#20
0
文件: bert.py 项目: ghajduk3/COLI
def train_classifier(model: BertForSequenceClassification,
                     dataset: TensorDataset, validation_ratio: float,
                     batch_size: int, freeze_embeddings_layer: bool,
                     freeze_encoder_layers: int,
                     epochs: int) -> (BertForSequenceClassification, list):

    device = select_device()

    train_size = int(validation_ratio * len(dataset))
    val_size = len(dataset) - train_size

    train_dataset, val_dataset = random_split(dataset, [train_size, val_size])

    train_dataloader = DataLoader(train_dataset,
                                  sampler=RandomSampler(train_dataset),
                                  batch_size=batch_size)

    validation_dataloader = DataLoader(val_dataset,
                                       sampler=SequentialSampler(val_dataset),
                                       batch_size=batch_size)

    modules = []

    if freeze_embeddings_layer:
        modules.append(model.bert.embeddings)

    for i in range(freeze_encoder_layers):
        modules.append(model.bert.encoder.layer[i])

    for module in modules:
        for param in module.parameters():
            param.requires_grad = False

    model.to(device)

    optimizer = AdamW(filter(lambda p: p.requires_grad, model.parameters()),
                      lr=5e-5)

    total_steps = len(train_dataloader) * epochs

    scheduler = get_linear_schedule_with_warmup(optimizer,
                                                num_warmup_steps=0,
                                                num_training_steps=total_steps)

    training_stats = []

    total_t0 = time.time()

    for epoch_i in range(0, epochs):

        print("")
        print('======== Epoch {:} / {:} ========'.format(epoch_i + 1, epochs))
        print('Training...')

        t0 = time.time()

        total_train_loss = 0

        model.train()

        for step, batch in enumerate(train_dataloader):

            if step % 40 == 0 and not step == 0:
                elapsed = format_time(time.time() - t0)
                print('  Batch {:>5,}  of  {:>5,}.    Elapsed: {:}.'.format(
                    step, len(train_dataloader), elapsed))

            b_input_ids = batch[0].to(device)
            b_input_mask = batch[1].to(device)
            b_labels = batch[2].to(device)

            model.zero_grad()

            outputs = model(b_input_ids,
                            token_type_ids=None,
                            attention_mask=b_input_mask,
                            labels=b_labels)

            loss = outputs.loss
            logits = outputs.logits

            total_train_loss += loss.item()

            loss.backward()

            # Clip the norm of the gradients to 1.0.
            # This is to help prevent the "exploding gradients" problem.
            torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)

            optimizer.step()

            scheduler.step()

        avg_train_loss = total_train_loss / len(train_dataloader)

        training_time = format_time(time.time() - t0)

        print("")
        print("  Average training loss: {0:.2f}".format(avg_train_loss))
        print("  Training epcoh took: {:}".format(training_time))

        print("")
        print("Running Validation...")

        t0 = time.time()

        model.eval()

        total_eval_accuracy = 0
        total_eval_loss = 0
        nb_eval_steps = 0

        for batch in validation_dataloader:

            b_input_ids = batch[0].to(device)
            b_input_mask = batch[1].to(device)
            b_labels = batch[2].to(device)

            with torch.no_grad():

                outputs = model(b_input_ids,
                                token_type_ids=None,
                                attention_mask=b_input_mask,
                                labels=b_labels)

                loss = outputs.loss
                logits = outputs.logits

            total_eval_loss += loss.item()

            logits = logits.detach().cpu().numpy()
            label_ids = b_labels.cpu().numpy()

            total_eval_accuracy += flat_accuracy(logits, label_ids)

        avg_val_accuracy = total_eval_accuracy / len(validation_dataloader)
        print("  Accuracy: {0:.2f}".format(avg_val_accuracy))

        avg_val_loss = total_eval_loss / len(validation_dataloader)

        validation_time = format_time(time.time() - t0)

        print("  Validation Loss: {0:.2f}".format(avg_val_loss))
        print("  Validation took: {:}".format(validation_time))

        training_stats.append({
            'epoch': epoch_i + 1,
            'Training Loss': avg_train_loss,
            'Valid. Loss': avg_val_loss,
            'Valid. Accur.': avg_val_accuracy,
            'Training Time': training_time,
            'Validation Time': validation_time
        })

    print("")
    print("Training complete!")

    print("Total training took {:} (h:mm:ss)".format(
        format_time(time.time() - total_t0)))

    return model, training_stats
示例#21
0
class AdapterCompositionTest(unittest.TestCase):
    def setUp(self):
        self.model = BertForSequenceClassification(BertConfig())
        self.model.add_adapter("a")
        self.model.add_adapter("b")
        self.model.add_adapter("c")
        self.model.add_adapter("d")
        self.model.to(torch_device)
        self.model.train()

    def training_pass(self):
        inputs = {}
        inputs["input_ids"] = ids_tensor((1, 128), 1000)
        inputs["labels"] = torch.ones(1, dtype=torch.long)
        loss = self.model(**inputs).loss
        loss.backward()

    def test_simple_split(self):
        # pass over split setup
        self.model.set_active_adapters(Split("a", "b", 64))

        self.training_pass()

    def test_stacked_split(self):
        # split into two stacks
        self.model.set_active_adapters(
            Split(Stack("a", "b"), Stack("c", "d"), split_index=64))

        self.training_pass()

    def test_stacked_fusion(self):
        self.model.add_fusion(Fuse("b", "d"))

        # fuse two stacks
        self.model.set_active_adapters(Fuse(Stack("a", "b"), Stack("c", "d")))

        self.training_pass()

    def test_mixed_stack(self):
        self.model.add_fusion(Fuse("a", "b"))

        self.model.set_active_adapters(
            Stack("a", Split("c", "d", split_index=64), Fuse("a", "b")))

        self.training_pass()

    def test_nested_split(self):
        # split into two stacks
        self.model.set_active_adapters(
            Split(Split("a", "b", split_index=32), "c", split_index=64))

        self.training_pass()

    def test_parallel(self):
        self.model.set_active_adapters(Parallel("a", "b", "c", "d"))

        inputs = {}
        inputs["input_ids"] = ids_tensor((1, 128), 1000)
        logits = self.model(**inputs).logits
        self.assertEqual(logits.shape, (4, 2))

    def test_nested_parallel(self):
        self.model.set_active_adapters(
            Stack("a", Parallel(Stack("b", "c"), "d")))

        inputs = {}
        inputs["input_ids"] = ids_tensor((1, 128), 1000)
        logits = self.model(**inputs).logits
        self.assertEqual(logits.shape, (2, 2))
示例#22
0
class TorchBertClassifierModel(TorchModel):
    """Bert-based model for text classification on PyTorch.

    It uses output from [CLS] token and predicts labels using linear transformation.

    Args:
        n_classes: number of classes
        pretrained_bert: pretrained Bert checkpoint path or key title (e.g. "bert-base-uncased")
        one_hot_labels: set True if one-hot encoding for labels is used
        multilabel: set True if it is multi-label classification
        return_probas: set True if return class probabilites instead of most probable label needed
        attention_probs_keep_prob: keep_prob for Bert self-attention layers
        hidden_keep_prob: keep_prob for Bert hidden layers
        optimizer: optimizer name from `torch.optim`
        optimizer_parameters: dictionary with optimizer's parameters,
                              e.g. {'lr': 0.1, 'weight_decay': 0.001, 'momentum': 0.9}
        clip_norm: clip gradients by norm coefficient
        bert_config_file: path to Bert configuration file (not used if pretrained_bert is key title)
    """
    def __init__(self,
                 n_classes,
                 pretrained_bert,
                 one_hot_labels: bool = False,
                 multilabel: bool = False,
                 return_probas: bool = False,
                 attention_probs_keep_prob: Optional[float] = None,
                 hidden_keep_prob: Optional[float] = None,
                 optimizer: str = "AdamW",
                 optimizer_parameters: dict = {
                     "lr": 1e-3,
                     "weight_decay": 0.01,
                     "betas": (0.9, 0.999),
                     "eps": 1e-6
                 },
                 clip_norm: Optional[float] = None,
                 bert_config_file: Optional[str] = None,
                 **kwargs) -> None:

        self.return_probas = return_probas
        self.one_hot_labels = one_hot_labels
        self.multilabel = multilabel
        self.pretrained_bert = pretrained_bert
        self.bert_config_file = bert_config_file
        self.attention_probs_keep_prob = attention_probs_keep_prob
        self.hidden_keep_prob = hidden_keep_prob
        self.n_classes = n_classes
        self.clip_norm = clip_norm

        if self.multilabel and not self.one_hot_labels:
            raise RuntimeError(
                'Use one-hot encoded labels for multilabel classification!')

        if self.multilabel and not self.return_probas:
            raise RuntimeError(
                'Set return_probas to True for multilabel classification!')

        super().__init__(optimizer=optimizer,
                         optimizer_parameters=optimizer_parameters,
                         **kwargs)

    def train_on_batch(self, features: List[InputFeatures],
                       y: Union[List[int], List[List[int]]]) -> Dict:
        """Train model on given batch.
        This method calls train_op using features and y (labels).

        Args:
            features: batch of InputFeatures
            y: batch of labels (class id or one-hot encoding)

        Returns:
            dict with loss and learning_rate values
        """
        input_ids = [f.input_ids for f in features]
        input_masks = [f.attention_mask for f in features]

        b_input_ids = torch.cat(input_ids, dim=0).to(self.device)
        b_input_masks = torch.cat(input_masks, dim=0).to(self.device)
        b_labels = torch.from_numpy(np.array(y)).to(self.device)

        self.optimizer.zero_grad()

        loss, logits = self.model(b_input_ids,
                                  token_type_ids=None,
                                  attention_mask=b_input_masks,
                                  labels=b_labels)
        loss.backward()
        # Clip the norm of the gradients to 1.0.
        # This is to help prevent the "exploding gradients" problem.
        if self.clip_norm:
            torch.nn.utils.clip_grad_norm_(self.model.parameters(),
                                           self.clip_norm)

        self.optimizer.step()
        if self.lr_scheduler is not None:
            self.lr_scheduler.step()

        return {'loss': loss.item()}

    def __call__(
            self, features: List[InputFeatures]
    ) -> Union[List[int], List[List[float]]]:
        """Make prediction for given features (texts).

        Args:
            features: batch of InputFeatures

        Returns:
            predicted classes or probabilities of each class

        """
        input_ids = [f.input_ids for f in features]
        input_masks = [f.attention_mask for f in features]

        b_input_ids = torch.cat(input_ids, dim=0).to(self.device)
        b_input_masks = torch.cat(input_masks, dim=0).to(self.device)

        with torch.no_grad():
            # Forward pass, calculate logit predictions
            logits = self.model(b_input_ids,
                                token_type_ids=None,
                                attention_mask=b_input_masks)
            logits = logits[0]

        if self.return_probas:
            if not self.multilabel:
                pred = torch.nn.functional.softmax(logits, dim=-1)
            else:
                pred = torch.nn.functional.sigmoid(logits)
            pred = pred.detach().cpu().numpy()
        else:
            logits = logits.detach().cpu().numpy()
            pred = np.argmax(logits, axis=1)
        return pred

    @overrides
    def load(self, fname=None):
        if fname is not None:
            self.load_path = fname

        if self.pretrained_bert and not Path(self.pretrained_bert).is_file():
            self.model = BertForSequenceClassification.from_pretrained(
                self.pretrained_bert,
                num_labels=self.n_classes,
                output_attentions=False,
                output_hidden_states=False)
        elif self.bert_config_file and Path(self.bert_config_file).is_file():
            self.bert_config = BertConfig.from_json_file(
                str(expand_path(self.bert_config_file)))

            if self.attention_probs_keep_prob is not None:
                self.bert_config.attention_probs_dropout_prob = 1.0 - self.attention_probs_keep_prob
            if self.hidden_keep_prob is not None:
                self.bert_config.hidden_dropout_prob = 1.0 - self.hidden_keep_prob
            self.model = BertForSequenceClassification(config=self.bert_config)
        else:
            raise ConfigError("No pre-trained BERT model is given.")

        self.model.to(self.device)

        self.optimizer = getattr(torch.optim, self.optimizer_name)(
            self.model.parameters(), **self.optimizer_parameters)
        if self.lr_scheduler_name is not None:
            self.lr_scheduler = getattr(torch.optim.lr_scheduler,
                                        self.lr_scheduler_name)(
                                            self.optimizer,
                                            **self.lr_scheduler_parameters)

        if self.load_path:
            log.info(f"Load path {self.load_path} is given.")
            if isinstance(self.load_path,
                          Path) and not self.load_path.parent.is_dir():
                raise ConfigError("Provided load path is incorrect!")

            weights_path = Path(self.load_path.resolve())
            weights_path = weights_path.with_suffix(f".pth.tar")
            if weights_path.exists():
                log.info(f"Load path {weights_path} exists.")
                log.info(
                    f"Initializing `{self.__class__.__name__}` from saved.")

                # now load the weights, optimizer from saved
                log.info(f"Loading weights from {weights_path}.")
                checkpoint = torch.load(weights_path, map_location=self.device)
                self.model.load_state_dict(checkpoint["model_state_dict"])
                self.optimizer.load_state_dict(
                    checkpoint["optimizer_state_dict"])
                self.epochs_done = checkpoint.get("epochs_done", 0)
            else:
                log.info(
                    f"Init from scratch. Load path {weights_path} does not exist."
                )
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default='/hdd/lujunyu/dataset/multi_turn_corpus/ubuntu/',
        type=str,
        required=False,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument("--task_name",
                        default='ubuntu',
                        type=str,
                        required=False,
                        help="The name of the task to train.")
    parser.add_argument(
        "--output_dir",
        default='/hdd/lujunyu/model/chatbert/ubuntu_base_si/',
        type=str,
        required=False,
        help="The output directory where the model checkpoints will be written."
    )
    parser.add_argument(
        "--init_checkpoint",
        default='/hdd/lujunyu/model/chatbert/ubuntu_base_si_aug/model.pt',
        type=str,
        help="Initial checkpoint (usually from a pre-trained BERT model).")

    ## Other parameters
    parser.add_argument("--do_train",
                        default=False,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument(
        "--do_lower_case",
        default=False,
        action='store_true',
        help=
        "Whether to lower case the input text. True for uncased models, False for cased models."
    )
    parser.add_argument(
        "--max_seq_length",
        default=256,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")

    parser.add_argument("--eval_batch_size",
                        default=2000,
                        type=int,
                        help="Total batch size for eval.")

    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")

    args = parser.parse_args()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')

    bert_config = BertConfig.from_pretrained('bert-base-uncased')
    tokenizer = BertTokenizer.from_pretrained('bert-base-uncased',
                                              do_lower_case=args.do_lower_case)

    if args.max_seq_length > bert_config.max_position_embeddings:
        raise ValueError(
            "Cannot use sequence length {} because the BERT model was only trained up to sequence length {}"
            .format(args.max_seq_length, bert_config.max_position_embeddings))

    test_dataset = UbuntuDataset(file_path=os.path.join(
        args.data_dir, "test.txt"),
                                 max_seq_length=args.max_seq_length,
                                 tokenizer=tokenizer)
    test_dataloader = torch.utils.data.DataLoader(
        test_dataset,
        batch_size=args.eval_batch_size,
        sampler=SequentialSampler(test_dataset),
        num_workers=4)

    model = BertForSequenceClassification(bert_config).from_pretrained(
        args.init_checkpoint, config=bert_config)
    model.to(device)

    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    logger.info("***** Running testing *****")
    logger.info("  Num examples = %d", len(test_dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)

    f = open(os.path.join(args.output_dir, 'logits_test.txt'), 'w')

    model.eval()
    test_loss = 0
    nb_test_steps, nb_test_examples = 0, 0
    for input_ids, input_mask, segment_ids, label_ids in tqdm(test_dataloader,
                                                              desc="Step"):
        input_ids = input_ids.to(device)
        input_mask = input_mask.to(device)
        segment_ids = segment_ids.to(device)

        with torch.no_grad():
            tmp_test_loss, logits = model(input_ids,
                                          token_type_ids=segment_ids,
                                          attention_mask=input_mask,
                                          labels=label_ids)

        logits = logits.detach().cpu().numpy()
        label_ids = label_ids.to('cpu').numpy()

        for logit, label in zip(logits, label_ids):
            logit = '{},{}'.format(logit[0], logit[1])
            f.write('_\t{}\t{}\n'.format(logit, label))

        test_loss += tmp_test_loss.mean().item()

        nb_test_examples += input_ids.size(0)
        nb_test_steps += 1

    f.close()
    test_loss = test_loss / nb_test_steps
    result = evaluate(os.path.join(args.output_dir, 'logits_test.txt'))
    result.update({'test_loss': test_loss})

    output_eval_file = os.path.join(args.output_dir, "results_test.txt")
    with open(output_eval_file, "w") as writer:
        logger.info("***** Test results *****")
        for key in sorted(result.keys()):
            logger.info("  %s = %s", key, str(result[key]))
            writer.write("%s = %s\n" % (key, str(result[key])))
示例#24
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir", default=None, type=str, required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
                        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
    parser.add_argument("--task_name", default=None, type=str, required=True,
                        help="The name of the task to train selected in the list: " + ", ".join(processors.keys()))
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")

    ## Other parameters
    parser.add_argument("--config_name", default="", type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument("--max_seq_length", default=128, type=int,
                        help="The maximum total input sequence length after tokenization. Sequences longer "
                             "than this will be truncated, sequences shorter will be padded.")
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval", action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--evaluate_during_training", action='store_true',
                        help="Rul evaluation during training at each logging step.")
    parser.add_argument("--do_lower_case", action='store_true',
                        help="Set this flag if you are using an uncased model.")

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for evaluation.")
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay", default=0.0, type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")

    parser.add_argument('--logging_steps', type=int, default=50,
                        help="Log every X updates steps.")
    parser.add_argument('--save_steps', type=int, default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument("--eval_all_checkpoints", action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
    parser.add_argument("--no_cuda", action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
    parser.add_argument('--seed', type=int, default=42,
                        help="random seed for initialization")

    parser.add_argument('--tpu', action='store_true',
                        help="Whether to run on the TPU defined in the environment variables")
    parser.add_argument('--tpu_ip_address', type=str, default='',
                        help="TPU IP address if none are set in the environment variables")
    parser.add_argument('--tpu_name', type=str, default='',
                        help="TPU name if none are set in the environment variables")
    parser.add_argument('--xrt_tpu_config', type=str, default='',
                        help="XRT TPU config if none are set in the environment variables")

    parser.add_argument('--fp16', action='store_true',
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument("--local_rank", type=int, default=-1,
                        help="For distributed training: local_rank")
    parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
    parser.add_argument('--first_n_examples', type=int, default=10000)
    parser.add_argument('--add_cnn', type=int, default=0)
    parser.add_argument('--cnn_filter_width', type=int, default=1)
    parser.add_argument('--diagonal_mask', type=int, default=0)
    parser.add_argument('--context_width', type=int, default=5)
    args = parser.parse_args()

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
        args.n_gpu = 1
    args.device = device

    if args.tpu:
        if args.tpu_ip_address:
            os.environ["TPU_IP_ADDRESS"] = args.tpu_ip_address
        if args.tpu_name:
            os.environ["TPU_NAME"] = args.tpu_name
        if args.xrt_tpu_config:
            os.environ["XRT_TPU_CONFIG"] = args.xrt_tpu_config

        assert "TPU_IP_ADDRESS" in os.environ
        assert "TPU_NAME" in os.environ
        assert "XRT_TPU_CONFIG" in os.environ

        import torch_xla
        import torch_xla.core.xla_model as xm
        args.device = xm.xla_device()
        args.xla_model = xm

    # Setup logging
    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
                    args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)

    # Set seed
    set_seed(args)

    # Prepare GLUE task
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
                                          num_labels=num_labels,
                                          finetuning_task=args.task_name,
                                          cache_dir=args.cache_dir if args.cache_dir else None)
    config.add_cnn = bool(args.add_cnn)
    config.cnn_filter_width = args.cnn_filter_width
    config.max_seq_length = args.max_seq_length
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
                                                do_lower_case=args.do_lower_case,
                                                cache_dir=args.cache_dir if args.cache_dir else None)
    #model = model_class.from_pretrained(args.model_name_or_path,
    #                                   from_tf=bool('.ckpt' in args.model_name_or_path),
    #                                    config=config,
    #                                   cache_dir=args.cache_dir if args.cache_dir else None)
    model = BertForSequenceClassification(config)

    if args.local_rank == 0:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    model.to(args.device)

    logger.info("Training/evaluation parameters %s", args)


    # Training
    if args.do_train:
        train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)


    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0) and not args.tpu:
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)

        # Good practice: save your training arguments together with the trained model
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))

        # Load a trained model and vocabulary that you have fine-tuned
        model = model_class.from_pretrained(args.output_dir)
        tokenizer = tokenizer_class.from_pretrained(args.output_dir)
        model.to(args.device)


    # Evaluation
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
            checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else ""
            
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
            result = evaluate(args, model, tokenizer, prefix=prefix)
            result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
            results.update(result)

    return results
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir",
                        default='/hdd/lujunyu/dataset/multi_turn_corpus/ubuntu/',
                        type=str,
                        required=False,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
    parser.add_argument("--task_name",
                        default='ubuntu',
                        type=str,
                        required=False,
                        help="The name of the task to train.")
    parser.add_argument("--output_dir",
                        default='/hdd/lujunyu/model/chatbert/ubuntu_without_pretraining/',
                        type=str,
                        required=False,
                        help="The output directory where the model checkpoints will be written.")

    ## Other parameters
    parser.add_argument("--init_model_name",
                        default='bert-base-uncased',
                        type=str,
                        help="Initial checkpoint (usually from a pre-trained BERT model).")
    parser.add_argument("--do_lower_case",
                        default=True,
                        action='store_true',
                        help="Whether to lower case the input text. True for uncased models, False for cased models.")
    parser.add_argument("--data_augmentation",
                        default=False,
                        action='store_true',
                        help="Whether to use augmentation")
    parser.add_argument("--max_seq_length",
                        default=256,
                        type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")
    parser.add_argument("--do_train",
                        default=True,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_test",
                        default=True,
                        action='store_true',
                        help="Whether to run eval on the test set.")
    parser.add_argument("--train_batch_size",
                        default=500,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=500,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=3e-3,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=10.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_steps",
                        default=0.0,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--weight_decay",
                        default=1e-3,
                        type=float,
                        help="weight_decay")
    parser.add_argument("--save_checkpoints_steps",
                        default=8000,
                        type=int,
                        help="How often to save the model checkpoint.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=20,
                        help="Number of updates steps to accumualte before performing a backward/update pass.")
    args = parser.parse_args()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info("device %s n_gpu %d distributed training %r", device, n_gpu, bool(args.local_rank != -1))

    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))

    args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")

    bert_config = BertConfig.from_pretrained(args.init_model_name, num_labels=2)

    if args.max_seq_length > bert_config.max_position_embeddings:
        raise ValueError(
            "Cannot use sequence length {} because the BERT model was only trained up to sequence length {}".format(
            args.max_seq_length, bert_config.max_position_embeddings))

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
        if args.do_train:
            raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
    else:
        os.makedirs(args.output_dir, exist_ok=True)

    tokenizer = BertTokenizer.from_pretrained(args.init_model_name, do_lower_case=args.do_lower_case)
    if args.data_augmentation:
        train_dataset = UbuntuDatasetForSP(
            file_path=os.path.join(args.data_dir, "train_augment_3.txt"),
            max_seq_length=args.max_seq_length,
            tokenizer=tokenizer
        )
    else:
        train_dataset = UbuntuDatasetForSP(
            file_path=os.path.join(args.data_dir, "train.txt"),
            max_seq_length=args.max_seq_length,
            tokenizer=tokenizer
        )
    eval_dataset = UbuntuDatasetForSP(
        file_path=os.path.join(args.data_dir, "valid.txt"),
        max_seq_length=args.max_seq_length,
        tokenizer=tokenizer
    )

    train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.train_batch_size,
                                                sampler=RandomSampler(train_dataset), num_workers=4)
    eval_dataloader = torch.utils.data.DataLoader(eval_dataset, batch_size=args.eval_batch_size,
                                                sampler=SequentialSampler(eval_dataset), num_workers=4)

    model = BertForSequenceClassification(config=bert_config)
    model.to(device)

    num_train_steps = None
    if args.do_train:
        num_train_steps = int(
            len(train_dataset) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs)
        # Prepare optimizer
        param_optimizer = list(model.named_parameters())
        # remove pooler, which is not used thus it produce None grad that break apex
        param_optimizer = [n for n in param_optimizer]

        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
            'weight_decay': args.weight_decay}, {
            'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay': 0.0}]

        optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
        scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=num_train_steps)
    else:
        optimizer = None
        scheduler = None

    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    global_step = 0
    best_metric = 0.0
    if args.do_train:
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_dataset))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)

        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
                loss, _ = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask, labels=label_ids)
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                loss.backward()
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    optimizer.step()    # We have accumulated enought gradients
                    scheduler.step()
                    model.zero_grad()
                    global_step += 1

                if step % args.save_checkpoints_steps == 0:
                    model.eval()
                    f = open(os.path.join(args.output_dir, 'logits_dev.txt'), 'w')
                    eval_loss = 0
                    nb_eval_steps, nb_eval_examples = 0, 0
                    logits_all = []
                    for input_ids, input_mask, segment_ids, label_ids in eval_dataloader:
                        input_ids = input_ids.to(device)
                        input_mask = input_mask.to(device)
                        segment_ids = segment_ids.to(device)
                        label_ids = label_ids.to(device)

                        with torch.no_grad():
                            tmp_eval_loss, logits = model(input_ids, token_type_ids=segment_ids, attention_mask=input_mask, labels=label_ids)

                        logits = logits.detach().cpu().numpy()
                        logits_all.append(logits)
                        label_ids = label_ids.cpu().numpy()

                        for logit, label in zip(logits, label_ids):
                            logit = '{},{}'.format(logit[0], logit[1])
                            f.write('_\t{}\t{}\n'.format(logit, label))

                        eval_loss += tmp_eval_loss.mean().item()

                        nb_eval_examples += input_ids.size(0)
                        nb_eval_steps += 1

                    f.close()
                    logits_all = np.concatenate(logits_all,axis=0)
                    eval_loss = eval_loss / nb_eval_steps

                    result = evaluate(os.path.join(args.output_dir, 'logits_dev.txt'))
                    result.update({'eval_loss': eval_loss})

                    output_eval_file = os.path.join(args.output_dir, "eval_results_dev.txt")
                    with open(output_eval_file, "a") as writer:
                        logger.info("***** Eval results *****")
                        for key in sorted(result.keys()):
                            logger.info("  %s = %s", key, str(result[key]))
                            writer.write("%s = %s\n" % (key, str(result[key])))

                    ### Save the best checkpoint
                    if best_metric < result['R10@1'] + result['R10@2']:
                        try:  ### Remove 'module' prefix when using DataParallel
                            state_dict = model.module.state_dict()
                        except AttributeError:
                            state_dict = model.state_dict()
                        torch.save(state_dict, os.path.join(args.output_dir, "model.pt"))
                        best_metric = result['R10@1'] + result['R10@2']
                        logger.info('Saving the best model in {}'.format(os.path.join(args.output_dir, "model.pt")))

                        ### visualize bad cases of the best model
                        # logger.info('Saving Bad cases...')
                        # visualize_bad_cases(
                        #     logits=logits_all,
                        #     input_file_path=os.path.join(args.data_dir, 'valid.txt'),
                        #     output_file_path=os.path.join(args.output_dir, 'valid_bad_cases.txt')
                        # )

                    model.train()
示例#26
0
import emoji
from soynlp.normalizer import repeat_normalize

finetune_ckpt = './your_local_path/BaekBERT.ckpt'
test_path = '../data/testset/inferset.csv'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
args = Arg()

ckp = torch.load(finetune_ckpt, map_location=torch.device('cpu'))
pretrained_model_config = BertConfig.from_pretrained(
    args.pretrained_model,
    num_labels=ckp['state_dict']['bert.classifier.bias'].shape.numel(),
)
model = BertForSequenceClassification(pretrained_model_config)
model.load_state_dict({k[5:]: v for k, v in ckp['state_dict'].items()})
model.to(device)
model.eval()


def read_data(path):
    if path.endswith('xlsx'):
        return pd.read_excel(path)
    elif path.endswith('csv'):
        return pd.read_csv(path)
    elif path.endswith('tsv') or path.endswith('txt'):
        return pd.read_csv(path, sep='\t')
    else:
        raise NotImplementedError(
            'Only Excel(xlsx)/Csv/Tsv(txt) are Supported')

class bert_classifier(object):
    def __init__(self):
        self.config = Config()
        self.device_setup()
        self.model_setup()

    def device_setup(self):
        """
        设备配置并加载BERT模型
        :return:
        """

        # 使用GPU,通过model.to(device)的方式使用
        self.device = torch.device(
            "cuda:0" if torch.cuda.is_available() else "cpu")

        model_save_path = self.config.get("result", "model_save_path")
        config_save_path = self.config.get("result", "config_save_path")
        vocab_save_path = self.config.get("result", "vocab_save_path")

        self.model_config = BertConfig.from_json_file(config_save_path)
        self.model = BertForSequenceClassification(self.model_config)
        self.state_dict = torch.load(model_save_path)
        self.model.load_state_dict(self.state_dict)
        self.tokenizer = transformers.BertTokenizer(vocab_save_path)
        self.model.to(self.device)
        self.model.eval()

    def model_setup(self):
        weight_decay = self.config.get("training_rule", "weight_decay")
        learning_rate = self.config.get("training_rule", "learning_rate")

        # 定义优化器和损失函数
        # Prepare optimizer and schedule (linear warmup and decay)
        no_decay = ['bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in self.model.named_parameters()
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            weight_decay
        }, {
            'params': [
                p for n, p in self.model.named_parameters()
                if any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.0
        }]
        self.optimizer = AdamW(optimizer_grouped_parameters, lr=learning_rate)
        self.criterion = nn.CrossEntropyLoss()

    def predict(self, sentence):
        input_ids, token_type_ids = convert_text_to_ids(
            self.tokenizer, sentence)
        input_ids = seq_padding(self.tokenizer, [input_ids])
        token_type_ids = seq_padding(self.tokenizer, [token_type_ids])
        # 需要 LongTensor
        input_ids, token_type_ids = input_ids.long(), token_type_ids.long()
        # 梯度清零
        self.optimizer.zero_grad()
        # 迁移到GPU
        input_ids, token_type_ids = input_ids.to(
            self.device), token_type_ids.to(self.device)
        output = self.model(input_ids=input_ids, token_type_ids=token_type_ids)
        y_pred_prob = output[0]
        y_pred_label = y_pred_prob.argmax(dim=1)
        print(y_pred_label)