def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, pytorch_dump_path): # Initialize PyTorch model config = CanineConfig() model = CanineModel(config) model.eval() print(f"Building PyTorch model from configuration: {config}") # Load weights from tf checkpoint load_tf_weights_in_canine(model, config, tf_checkpoint_path) # Save pytorch-model (weights and configuration) print(f"Save PyTorch model to {pytorch_dump_path}") model.save_pretrained(pytorch_dump_path) # Save tokenizer files tokenizer = CanineTokenizer() print(f"Save tokenizer files to {pytorch_dump_path}") tokenizer.save_pretrained(pytorch_dump_path)
def canine_tokenizer(self): return CanineTokenizer.from_pretrained("google/canine-s")
def setUp(self): super().setUp() tokenizer = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname)
def canine_tokenizer(self): # TODO replace nielsr by google return CanineTokenizer.from_pretrained("nielsr/canine-s")