def base_lm(): from transformers import DebertaTokenizer, DebertaForMaskedLM import torch tokenizer = DebertaTokenizer.from_pretrained('microsoft/deberta-base') model = DebertaForMaskedLM.from_pretrained('microsoft/deberta-base') inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt") labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"] outputs = model(**inputs, labels=labels) loss = outputs.loss logits = outputs.logits print(loss) print(logits)
def create_and_check_deberta_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = DebertaForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))