def test_local_attn_probs(self): model = GPTNeoModel.from_pretrained( "valhalla/gpt-neo-random-tiny").eval() layer = model.h[1].attn.attention.to(torch_device) hidden_states = self._get_hidden_states() hidden_states = torch.cat([hidden_states, hidden_states - 0.5], dim=2) batch_size, seq_length, _ = hidden_states.shape mask_tokens = 2 attention_mask = torch.ones(batch_size, seq_length, device=torch_device, dtype=torch.long) attention_mask[:, -mask_tokens:] = 0 # dont attend last mask_tokens attention_mask = attention_mask.view(batch_size, -1) attention_mask = attention_mask[:, None, None, :] attention_mask = (1.0 - attention_mask) * -10000.0 attn_probs = layer(hidden_states, attention_mask=attention_mask, output_attentions=True)[-1] # the last 2 tokens are masked, and should have 0 attn_probs self.assertTrue( torch.all(attn_probs[:, :, -mask_tokens:, -mask_tokens:] == 0)) # in loacal attention each token can only attend to the previous window_size tokens (inlcuding itself) # here window_size is 4, so a token at index 5 can only attend to indcies [2, 3, 4, 5] # and the attn_probs should be 0 for token [0, 1] self.assertTrue(torch.all(attn_probs[:, :, 5, 2:6] != 0)) self.assertTrue(torch.all(attn_probs[:, :, 5, :2] == 0))
def test_local_attn_probs(self): model = GPTNeoModel.from_pretrained( "valhalla/gpt-neo-random-tiny").eval() layer = model.h[1].attn.attention.to(torch_device) hidden_states = self._get_hidden_states() hidden_states = torch.cat([hidden_states, hidden_states - 0.5], dim=2) batch_size, seq_length, hidden_size = hidden_states.shape mask_tokens = 3 attention_mask = torch.ones(batch_size, seq_length, device=torch_device, dtype=torch.long) attention_mask[:, -mask_tokens:] = 0 # dont atten last mask_tokens local_causal_mask = GPTNeoAttentionMixin.create_local_attention_mask( batch_size, seq_length, model.config.window_size, torch_device, attention_mask) _, attn_probs = layer(hidden_states, attention_mask=local_causal_mask, output_attentions=True) # the last 3 tokens will be in the last block, and should have 0 attn_probs self.assertTrue( torch.all(attn_probs[:, -1, :, -mask_tokens:, -mask_tokens:] == 0)) # the first config.window_size tokens in the first block are always padded # and should have 0 attn_probs self.assertTrue( torch.all(attn_probs[:, 0, :, :model.config.window_size:, :model. config.window_size] == 0))
def create_and_check_gpt_neo_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = GPTNeoModel(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True) outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids) outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) output, past = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size) # append to next input_ids and token_type_ids next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1) output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"] output_from_past = model(next_tokens, token_type_ids=next_token_types, past_key_values=past)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_gpt_neo_model_attention_mask_past( self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = GPTNeoModel(config=config) model.to(torch_device) model.eval() # create attention mask attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) half_seq_length = self.seq_length // 2 attn_mask[:, half_seq_length:] = 0 # first forward pass output, past = model(input_ids, attention_mask=attn_mask).to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor( (1, ), half_seq_length).item() + 1 random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens # append to next input_ids and attn_mask next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) attn_mask = torch.cat( [ attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device) ], dim=1, ) # get two different outputs output_from_no_past = model( next_input_ids, attention_mask=attn_mask)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1, ), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach( ) output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue( torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_gpt_neo_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = GPTNeoModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def test_model_from_pretrained(self): for model_name in GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = GPTNeoModel.from_pretrained(model_name) self.assertIsNotNone(model)