class aitextgen: """ Class that serves as the main aitextgen object for training and generation. :param model: Either the file path of a PyTorch GPT-2 model, or a string representing the Huggingface model to download. :param config: Either a file path of a config.json representing the model, or a GPT2Config with the model architecture. :param vocab_file: Path to a vocab file (generated by train_tokenizer()) :param merges_file: Path to a merges file (generated by train_tokenizer()) :param cache_dir: folder path which downloaded models will be stored and loaded :param tf_gpt2: model indicator of OpenAI-distributed version of GPT-2. This will convert the model to PyTorch if not present. :param to_gpu: Whether to load the model into the GPU after loading (good for generation) :param to_fp16: Whether to convert the model to FP16 before loading to GPU (for supported GPUs only) :param verbose: Whether to enable logging from base Huggingface packages :param bos_token: String to override the beginning-of-string token :param eos_token: String to override the end-of-string token :param unk_token: String to override the unknown token :lightning_processing: String to change paralellism option of the pytorch lightning library """ openai_tf_gpt2 = None # default values for GPT2Tokenizer tokenizer = None vocab_file = os.path.join(STATIC_PATH, "gpt2_vocab.json") merges_file = os.path.join(STATIC_PATH, "gpt2_merges.txt") bos_token = "<|endoftext|>" eos_token = "<|endoftext|>" unk_token = "<|endoftext|>" pad_token = "<|endoftext|>" def __init__( self, model: str = None, model_folder: str = None, config: Union[str, GPT2Config] = None, vocab_file: str = None, merges_file: str = None, tokenizer_file: str = None, schema_tokens: List[str] = None, schema_return: List[str] = None, cache_dir: str = "aitextgen", tf_gpt2: str = None, to_gpu: bool = False, to_fp16: bool = False, verbose: bool = False, gradient_checkpointing: bool = False, bos_token: str = None, eos_token: str = None, unk_token: str = None, lightning_processing: str = 'dp'**kwargs, ) -> None: if model: assert not os.path.isfile(model), ( "As of aitextgen 0.5.0, you must " + "use `model_folder` to load an existing model.") if not verbose: for module in [ "transformers.file_utils", "transformers.configuration_utils", "transformers.tokenization_utils", "filelock", "transformers.modeling_gpt2", ]: logging.getLogger(module).setLevel(logging.WARN) logging.getLogger("transformers.modeling_utils").setLevel( logging.ERROR) if tf_gpt2: self.openai_tf_gpt2 = tf_gpt2 # Download + convert the TF weights if a PyTorch model has not been created if not os.path.isfile( os.path.join(cache_dir, f"pytorch_model_{tf_gpt2}.bin")): assert tf_gpt2 in [ "124M", "355M", "774M", "1558M", ], "Invalid TensorFlow GPT-2 model size." logger.info( f"Downloading the {tf_gpt2} GPT-2 TensorFlow weights/config " + "from Google's servers") download_gpt2(cache_dir, tf_gpt2) logger.info( f"Converting the {tf_gpt2} GPT-2 TensorFlow weights to PyTorch." ) config_path = os.path.join(cache_dir, tf_gpt2, "hparams.json") convert_gpt2_checkpoint_to_pytorch( os.path.join(cache_dir, tf_gpt2), config_path, cache_dir, ) os.rename( os.path.join(cache_dir, "pytorch_model.bin"), os.path.join(cache_dir, f"pytorch_model_{tf_gpt2}.bin"), ) os.rename( os.path.join(cache_dir, "config.json"), os.path.join(cache_dir, f"config_{tf_gpt2}.json"), ) logger.info(f"Loading {tf_gpt2} GPT-2 model from /{cache_dir}.") model = os.path.join(cache_dir, f"pytorch_model_{tf_gpt2}.bin") config = os.path.join(cache_dir, f"config_{tf_gpt2}.json") self.model = GPT2LMHeadModel.from_pretrained(model, config=config) elif model_folder: # A folder is provided containing pytorch_model.bin and config.json assert os.path.exists( os.path.join(model_folder, "pytorch_model.bin") ), f"There is no pytorch_model.bin in /{model_folder}." assert os.path.exists(os.path.join( model_folder, "config.json")), f"There is no config.json in /{model_folder}." logger.info( f"Loading model from provided weights and config in /{model_folder}." ) self.model = AutoModelForCausalLM.from_pretrained( model_folder, local_files_only=True) elif config: # Manually construct a model from scratch logger.info("Constructing model from provided config.") if isinstance(config, str): config = AutoConfig.from_pretrained(config) self.model = AutoModelForCausalLM.from_config(config=config) else: # Download and cache model from Huggingface if os.path.isdir(cache_dir) and len(os.listdir(cache_dir)) > 0: logger.info( f"Loading {model or 'gpt2'} model from /{cache_dir}.") else: logger.info( f"Downloading {model or 'gpt2'} model to /{cache_dir}.") self.model = AutoModelForCausalLM.from_pretrained( model or "gpt2", cache_dir=cache_dir) if model and "gpt2" not in model: logger.info(f"Using the tokenizer for {model}.") self.tokenizer = AutoTokenizer.from_pretrained( model, cache_dir=cache_dir, ) logger.info(self) if gradient_checkpointing or tf_gpt2 in ["355M", "774M", "1558M"]: logger.info("Gradient checkpointing enabled for model training.") setattr(self.model.config, "gradient_checkpointing", True) setattr(self.model.config, "use_cache", False) if schema_tokens: setattr(self.model.config, "schema_tokens", schema_tokens) if schema_return: setattr(self.model.config, "schema_return", schema_return) if self.tokenizer is None: # Update tokenizer settings (if not set already) args = locals() custom_tokenizer = False for attr in [ "vocab_file", "merges_file", "tokenizer_file", "bos_token", "eos_token", "unk_token", ]: if args[attr] is not None: custom_tokenizer = True setattr(self, attr, args[attr]) if custom_tokenizer: logger.info("Using a custom tokenizer.") else: logger.info("Using the default GPT-2 Tokenizer.") if tokenizer_file: # load the custom GPT-2 tokenizer from a serialized tokenizer. # GPT-Neo uses the GPT-2 tokenizer. self.tokenizer = PreTrainedTokenizerFast( tokenizer_file=tokenizer_file, bos_token=self.bos_token, eos_token=self.eos_token, unk_token=self.unk_token, pad_token=self.pad_token, ) else: self.tokenizer = GPT2TokenizerFast( vocab_file=self.vocab_file, merges_file=self.merges_file, bos_token=self.bos_token, eos_token=self.eos_token, unk_token=self.unk_token, pad_token=self.pad_token, verbose=False, ) if not custom_tokenizer: # https://github.com/huggingface/transformers/issues/10202 self.tokenizer.add_special_tokens( {"additional_special_tokens": ["<|endoftext|>"]}) self.tokenizer.padding_side = "left" if to_gpu: if to_fp16: logger.warn( "Currently, FP16 text generation results in random output. " + "You may want to avoid using to_fp16 for the time being.") self.to_fp16() self.to_gpu() def generate( self, n: int = 1, prompt: str = "", prepend_bos: bool = None, min_length: int = None, max_length: int = 256, temperature: float = 0.7, do_sample: bool = True, return_as_list: bool = False, seed: int = None, pad_token_id: str = None, schema: str = False, normalize_key: bool = True, use_cache: bool = True, lstrip: bool = True, nonempty_output: bool = True, skip_special_tokens: bool = True, **kwargs, ) -> Optional[str]: """ Generates texts using the stored Transformers model. Currently generates text using the model's generate() function. :param n: Numbers of texts to generate. :param prompt: Text to force the generated text to start with :param max_length: Maximum length for the generated text :param temperature: Determines the "creativity" of the generated text. The value range is different for each type of Transformer. :param do_sample: Samples the text, which is what we want. If False, the generated text will be the optimal prediction at each time, and therefore deterministic. :param return_as_list: Boolean which determine if text should be returned as a list. If False, the generated texts will be print to console. :param seed: A numeric seed which sets all randomness, allowing the generate text to be reproducible if rerunning with same parameters and model. """ prompt_text = prompt prompt_tensors = self.tokenizer(text=prompt, return_tensors="pt") if prompt: prompt_num_tokens = list(prompt_tensors["input_ids"].shape)[1] assert prompt_num_tokens < model_max_length( self.model.config ), f"The prompt is too large for the model. ({prompt_num_tokens} tokens)" input_ids = (prompt_tensors["input_ids"].to(self.get_device()) if prompt else None) if prepend_bos is None: prepend_bos = getattr(self.model.config, "line_by_line", None) if prepend_bos: bos = torch.tensor([[self.tokenizer.bos_token_id] ]).to(self.get_device()) if prompt: input_ids = torch.cat((bos, input_ids), dim=1) else: input_ids = bos if seed: set_seed(seed) if pad_token_id is None: pad_token_id = getattr(self.tokenizer, "pad_token_id", None) or getattr( self.tokenizer, "eos_token_id", None) # prevent an error from using a length greater than the model gen_max_length = model_max_length(self.model.config) max_length = min(gen_max_length, max_length) while True: outputs = self.model.generate( input_ids=input_ids, min_length=min_length, max_length=max_length, temperature=temperature, do_sample=do_sample, num_return_sequences=n, pad_token_id=pad_token_id, use_cache=use_cache, **kwargs, ) # Schema token handling if schema: schema_tokens = getattr(self.model.config, "schema_tokens") schema_return = getattr(self.model.config, "schema_return", None) schema_tokens_enc = self.tokenizer( text=schema_tokens)["input_ids"] nonalphanum_pattern = re.compile(r"[\W_]+", re.UNICODE) outputs = outputs.tolist() gen_texts = [] for output in outputs: gen_text_dict = {} # Get indices of each schema token within the text schema_token_indices = [ (schema_tokens[i], find_index_of_subset(output, token_enc)) for i, token_enc in enumerate(schema_tokens_enc) ] schema_token_indices.sort(key=lambda x: x[1]) for i, token_tuple in enumerate(schema_token_indices): start_index = token_tuple[1] key = (nonalphanum_pattern.sub("", token_tuple[0]) if normalize_key else token_tuple[0]) if start_index == -1: gen_text_dict[key] = "" else: end_index = (schema_token_indices[i + 1][1] - 1 if i + 1 < len(schema_token_indices) else None) gen_text_dict[key] = self.tokenizer.decode( output[start_index:end_index], skip_special_tokens=True) # remove fields not in schema_return if schema_return: keys = gen_text_dict.keys() if len(schema_return) == 1: gen_text_dict = gen_text_dict[schema_return[0]] for key in keys: if key not in schema_return: gen_text_dict.pop(key, None) gen_texts.append(gen_text_dict) # Reset seed if used if seed: reset_seed() if not return_as_list: print(*gen_texts, sep="\n" + "=" * 10 + "\n") break else: if n > 1: return gen_texts else: return gen_texts[0] # Typical use case else: gen_texts = self.tokenizer.batch_decode( outputs, skip_special_tokens=skip_special_tokens) # Handle stripping tokenization spaces w/ regex if lstrip: gen_texts = [ re.sub(r"^\s+", "", text) for text in gen_texts ] if nonempty_output: if min_length: gen_texts = list( filter(lambda x: len(x) > min_length, gen_texts)) else: gen_texts = list( filter(lambda x: len(x) > 0, gen_texts)) # if there is no generated text after cleanup, try again. if len(gen_texts) == 0: continue # Reset seed if used if seed: reset_seed() if not return_as_list: if prompt: # Bold the prompt if printing to console gen_texts = [ text.replace(prompt_text, f"\033[1m{prompt_text}\033[0m", 1) for text in gen_texts ] if n > 1: print(*gen_texts, sep="\n" + "=" * 10 + "\n") else: print(gen_texts[0]) break else: return gen_texts def generate_one(self, **kwargs) -> None: """ Generates a single text, and returns it as a string. Useful for returning a generated text within an API. See generate() for more parameters. """ return self.generate(n=1, return_as_list=True, **kwargs)[0] def generate_samples(self, n: int = 3, temperatures: List[float] = [0.7, 1.0, 1.2], **kwargs) -> None: """ Prints multiple samples to console at specified temperatures. """ for temperature in temperatures: print("#" * 20 + f"\nTemperature: {temperature}\n" + "#" * 20) self.generate(n=n, temperature=temperature, return_as_list=False, **kwargs) def generate_to_file( self, n: int = 20, batch_size: int = 1, destination_path: str = None, sample_delim: str = "=" * 20 + "\n", seed: int = None, **kwargs, ) -> None: """ Generates a bulk amount of texts to a file, into a format good for manually inspecting and curating the texts. :param n: Number of texts to generate :param batch_size: Number of texts to generate simultaneously, taking advantage of CPU/GPU parallelization. :param destination_path: File name of the file. If None, a timestampped file name is automatically used. :param sample_delim: The text used to delimit each generated text. :param seed: Seed used for the generation. The last part of a file name will be the seed used to reproduce a generation. :param cleanup: Whether to polish the text before returning See generate() for more parameters. """ assert n % batch_size == 0, f"n must be divisible by batch_size ({batch_size})." self.model = self.model.eval() if destination_path is None: # Create a time-based file name to prevent overwriting. # Use a 8-digit number as the seed, which is the last # numeric part of the file name. if seed is None: seed = randint(10**7, 10**8 - 1) destination_path = f"ATG_{datetime.utcnow():%Y%m%d_%H%M%S}_{seed}.txt" if seed: set_seed(seed) logger.info(f"Generating {n:,} texts to {destination_path}") pbar = trange(n) f = open(destination_path, "w", encoding="utf-8") for _ in range(n // batch_size): gen_texts = self.generate(n=batch_size, return_as_list=True, **kwargs) for gen_text in gen_texts: f.write("{}\n{}".format(gen_text, sample_delim)) pbar.update(batch_size) pbar.close() f.close() if seed: reset_seed() def train( self, train_data: Union[str, TokenDataset], output_dir: str = "trained_model", fp16: bool = False, fp16_opt_level: str = "O1", n_gpu: int = -1, tpu_cores: int = 0, max_grad_norm: float = 0.5, gradient_accumulation_steps: int = 1, seed: int = None, learning_rate: float = 1e-3, weight_decay: float = 0.05, adam_epsilon: float = 1e-8, warmup_steps: int = 0, num_steps: int = 5000, save_every: int = 1000, generate_every: int = 1000, n_generate: int = 1, loggers: List = None, batch_size: int = 1, num_workers: int = None, benchmark: bool = True, avg_loss_smoothing: float = 0.01, save_gdrive: bool = False, run_id: str = f"ATG_{datetime.utcnow():%Y%m%d_%H%M%S}", progress_bar_refresh_rate: int = 20, freeze_layers: bool = False, num_layers_freeze: int = None, use_deepspeed: bool = False, **kwargs, ) -> None: """ Trains/finetunes the model on the provided file/dataset using pytorch-lightning. :param train_data: Either a TokenDataset containing the samples to be trained, or a string containing the text to be trained (shortcut instead of dataset) :param output_dir: A string indicating where to store the resulting model file folder. :param fp16: Boolean whether to use fp16, assuming using a compatible GPU/TPU. :param fp16_opt_level: Option level for FP16/APEX training. :param n_gpu: Number of GPU to use (-1 implies all available GPUs) :param tpu_cores: Number of TPU cores to use (should be a multiple of 8) :param max_grad_norm: Maximum gradient normalization :param gradient_accumulation_steps: Number of gradient acc steps :param seed: Interger representing the training seed. :param learning_rate: Training learnign rate for the default AdamW optimizer. :param weight_decay: Weight decay for the default AdamW optimizer. :param warmup_steps: Warmrup steps for the default AdamW optimizer. :param num_steps: Number of samples through the dataset. :param save_every: Number of steps for each time to save the model to disk :param generate_every: Number of steps for each time to generate sample text :param n_generate: Number of texts to generate when generate_every occurs. :param loggers: pytorch-lightning logger(s) to log results. :param batch_size: Number of input samples per batch :param num_workers: Number of DataLoader workers :param benchmark: If using GPU, whether to use cudnn.benchmarkl :param avg_loss_smoothing: Smoothing factor for Avg loss in progress bar :param save_gdrive: If using Colab, whether to save the notebook to Google Drive at each save_every :param run_id: Run identifier; used for save_gdrive :param progress_bar_refresh_rate: How often to update the progress bar while training. """ if not os.path.exists(output_dir): os.makedirs(output_dir) if save_gdrive: assert ( "google.colab" in sys.modules ), "You must be in Colaboratory to copy to your Google Drive" create_gdrive_folder(run_id) self.model = self.model.train() is_gpu_used = torch.cuda.is_available() and n_gpu != 0 if isinstance(train_data, str): block_size = model_max_length(self.model.config) logger.info( f"Loading text from {train_data} with generation length of {block_size}." ) train_data = TokenDataset( tokenizer=self.tokenizer, bos_token=self.bos_token, eos_token=self.eos_token, unk_token=self.unk_token, file_path=train_data, block_size=block_size, **kwargs, ) setattr(self.model.config, "line_by_line", train_data.line_by_line) if freeze_layers or self.openai_tf_gpt2 == "1558M": logger.info("Layer freezing enabled for model training.") freeze_layers = True if num_layers_freeze: assert ( num_layers_freeze < self.model.config.n_layer ), "You are freezing more Transformer layers than in the model." if num_workers is None: # Use all CPU cores as workers if not training on CPU if is_gpu_used or tpu_cores > 0: num_workers = os.cpu_count() # If training on the CPU, use half the CPUs else: num_workers = int(os.cpu_count() / 2) hparams = dict( weight_decay=weight_decay, learning_rate=learning_rate, adam_epsilon=adam_epsilon, warmup_steps=warmup_steps, batch_size=batch_size, num_steps=num_steps, pin_memory=is_gpu_used, num_workers=num_workers, save_every=save_every, generate_every=generate_every, use_tpu=tpu_cores > 0, ) # Wrap the model in a pytorch-lightning module train_model = ATGTransformer(self.model, train_data, hparams, self.tokenizer) # Begin training if seed: set_seed(seed) if os.path.exists(output_dir) and "pytorch_model.bin" in os.listdir( output_dir): logger.warning( f"pytorch_model.bin already exists in /{output_dir} and will be overwritten!" ) # if try to use a GPU but no CUDA, use CPU if not is_gpu_used: n_gpu = 0 # force single-GPU on Windows if platform.system() == "Windows" and is_gpu_used and n_gpu != 1: logger.warning( "Windows does not support multi-GPU training. Setting to 1 GPU." ) n_gpu = 1 # use the DeepSpeed plugin if installed and specified deepspeed_plugin = None if is_gpu_used and use_deepspeed: deepspeed_plugin = DeepSpeedPlugin() logger.info("Using DeepSpeed training.") if not fp16: logger.info( "Setting FP16 to True for DeepSpeed ZeRO Training.") fp16 = True train_params = dict( accumulate_grad_batches=gradient_accumulation_steps, gpus=n_gpu, max_steps=num_steps, gradient_clip_val=max_grad_norm, checkpoint_callback=False, logger=loggers if loggers else False, weights_summary=None, progress_bar_refresh_rate=progress_bar_refresh_rate, # ignored callbacks=[ ATGProgressBar( save_every, generate_every, output_dir, n_generate, is_gpu_used, avg_loss_smoothing, run_id, save_gdrive, progress_bar_refresh_rate, freeze_layers, num_layers_freeze, ) ], plugins=deepspeed_plugin, ) if fp16: train_params["precision"] = 16 if fp16 else 32 train_params["amp_level"] = fp16_opt_level if tpu_cores > 0: train_params["tpu_cores"] = tpu_cores train_params["gpus"] = 0 n_gpu = 0 # benchmark gives a boost for GPUs if input size is constant, # which will always be the case with aitextgen training if is_gpu_used and benchmark: train_params["benchmark"] = True train_params["distributed_backend"] = lightning_processing trainer = pl.Trainer(**train_params) trainer.fit(train_model) logger.info(f"Saving trained model pytorch_model.bin to /{output_dir}") self.model.save_pretrained(output_dir) if save_gdrive: for pt_file in ["pytorch_model.bin", "config.json"]: shutil.copyfile( os.path.join(output_dir, pt_file), os.path.join("/content/drive/My Drive/", run_id, pt_file), ) if seed: reset_seed() def cross_train( self, inputs: List[TokenDataset], learning_rate: Union[float, List[float]] = 1e-4, num_steps: Union[int, List[int]] = 4000, run_id: str = f"ATG_{datetime.utcnow():%Y%m%d_%H%M%S}", **kwargs, ) -> None: """Trains a model across multiple input datasets, with automatic decay after each run.""" datasets = [ TokenDataset( vocab_file=self.vocab_file, merges_file=self.merges_file, bos_token=self.bos_token, eos_token=self.eos_token, unk_token=self.unk_token, file_path=x, **kwargs, ) if isinstance(x, str) else x for x in inputs ] if not isinstance(learning_rate, list): learning_rate = [ learning_rate / (2**x) for x in range(len(datasets)) ] if not isinstance(num_steps, list): num_steps = [int(num_steps / (2**x)) for x in range(len(datasets))] assert len(datasets) == len(learning_rate) == len(num_steps), ( "The provided learning_rates or num_steps" + " is not equal to the number of inputs.") for i, dataset in enumerate(datasets): logger.info( f"Now training on {dataset} for {num_steps[i]:,} steps.") self.train( dataset, learning_rate=learning_rate[i], num_steps=num_steps[i], run_id=run_id, **kwargs, ) def save(self, target_folder: str = os.getcwd()): """Saves the model into the specified directory.""" self.model.save_pretrained(target_folder) def save_for_upload(self, target_folder: str = "my-model"): """ Saves the model + tokenizerinto the specified directory. This generates the 6 files needed to upload the model to Huggingface's S3 bucket. """ self.model.save_pretrained(target_folder) self.tokenizer.save_pretrained(target_folder) def export( self, quantize: bool = True, ) -> None: """ Exports the model, with optional quantization """ def to_gpu(self, index: int = 0) -> None: """Moves the model to the specified GPU.""" assert torch.cuda.is_available(), "CUDA is not installed." self.model.to(torch.device("cuda", index)) def to_cpu(self, index: int = 0) -> None: """Moves the model to the specified CPU.""" self.model.to(torch.device("cpu", index)) def to_fp16(self) -> None: """ Converts the model to a FP16 representation. Should only be used to generate on a supported GPU. """ self.model = self.model.half() def get_device(self) -> str: """Getter for the current device where the model is located.""" return self.model.device.type def __repr__(self) -> str: # https://discuss.pytorch.org/t/how-do-i-check-the-number-of-parameters-of-a-model/4325/24 num_params_m = int( sum(p.numel() for p in self.model.parameters()) / 10**6) model_name = type(self.model.config).__name__.replace("Config", "") return f"{model_name} loaded with {num_params_m}M parameters."
print(f"\nLoaded tokenizer vocabulary ({len(tokenizer.get_vocab())}):\n" + "-"*50) for k, v in tokenizer.get_vocab().items(): print(k, ": ", v) goals = "has_anything(robot),on_surface(blue_block, tabletop),stacked(blue_block, red_block),on_surface(yellow_block, tabletop)" values = [False, True, True, False] input = process_goals(goals, values, return_string=True) print("-"*50) print("INPUT: ", input) encoded = tokenizer.encode(input, add_special_tokens=add_special_tokens) #, padding=True, truncation=True)#, return_tensors="pt") print(encoded) print("DECODED: ", tokenizer.decode(encoded, skip_special_tokens=False)) # Unit testing ;) def compare(debug=False): # Iterate through all inputs. diffs = 0 total = 0 # Open files one by one. for filename in tqdm(sierra_files): # Load the file. h5 = h5py.File(os.path.join(sierra_path, filename), 'r') #print("Symbolic Goal: ", h5["sym_goal"][()], '\n') symbolic_goals = h5["sym_goal"][()] #print("Symbolic Goal: ", h5["sym_goal"][()], '\n')
print(k, ": ", v) print("-" * 50) # Now, let's use it: input = "approach_obj(yellow_block),grasp_obj_on_red_block(yellow_block),lift_obj_from_red_block(yellow_block),place_on_center(yellow_block),approach_obj(red_block),grasp_obj(red_block),lift_obj_from_tabletop(red_block),align_red_block_with(blue_block),stack_red_block_on(blue_block),approach_obj(green_block),grasp_obj(green_block),lift_obj_from_far(green_block),place_on_center(green_block),approach_obj(yellow_block),grasp_obj(yellow_block),lift_obj_from_tabletop(yellow_block),align_yellow_block_with(red_block),stack_yellow_block_on(red_block),go_home(robot)" num_actions = len(input.split("),")) print(f"Input (number of actions: {num_actions}): {input}\n") input, _ = process_plan(input, cfg.skip_actions, return_string=True) print(f"Processed input: {input}\n") encoded = tokenizer.encode(input, add_special_tokens=False) print(f"Tokenized input (number of plan tokens {len(encoded)}): {encoded}\n") print("Detokenized: ", tokenizer.decode(encoded, skip_special_tokens=False)) # Unit testing ;) def compare(debug=False): min_plan_length = 100000 avg_plan_length = 0 max_plan_length = 0 # Iterate through all inputs. diffs = 0 total = 0 # Open files one by one. for filename in tqdm(sierra_files): # Load the file. h5 = h5py.File(os.path.join(sierra_path, filename), 'r')