def create_and_check_model(self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels): model = SplinterModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def test_model_from_pretrained(self): for model_name in SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = SplinterModel.from_pretrained(model_name) self.assertIsNotNone(model)