def create_and_check_squeezebert_model(
     self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
 ):
     model = SqueezeBertModel(config=config)
     model.to(torch_device)
     model.eval()
     result = model(input_ids, input_mask)
     result = model(input_ids)
     self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
示例#2
0
 def test_model_from_pretrained(self):
     for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
         model = SqueezeBertModel.from_pretrained(model_name)
         self.assertIsNotNone(model)
示例#3
0
from transformers import SqueezeBertTokenizer, SqueezeBertModel
import torch

tokenizer = SqueezeBertTokenizer.from_pretrained(
    'squeezebert/squeezebert-mnli-headless')
model = SqueezeBertModel.from_pretrained(
    'squeezebert/squeezebert-mnli-headless')

inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
outputs = model(**inputs)

last_hidden_states = outputs.last_hidden_state