def _run_value_model(self, observations, dist_inputs): if dist_inputs is None: dist_inputs = jnp.zeros(observations.shape[:2] + (self._policy_dist.n_inputs, )) actions = None if self._q_value: dist_inputs = jnp.broadcast_to( dist_inputs, (self._q_value_n_samples, ) + dist_inputs.shape) # Swapping the n_samples and batch_size axes, so the input is split # between accelerators along the batch_size axis. dist_inputs = jnp.swapaxes(dist_inputs, 0, 1) actions = self._policy_dist.sample(dist_inputs) log_probs = self._policy_dist.log_prob(dist_inputs, actions) obs = observations obs = jnp.reshape(obs, [obs.shape[0], 1] + list(obs.shape[1:])) inputs = (obs, actions) else: log_probs = None inputs = (observations, ) n_devices = math.device_count() weights = tl.for_n_devices(self._value_eval_model.weights, n_devices) state = tl.for_n_devices(self._value_eval_model.state, n_devices) rng = self._value_eval_model.rng values, _ = self._value_eval_jit(inputs, weights, state, rng) values *= self._value_network_scale values = jnp.squeeze(values, axis=-1) # Remove the singleton depth dim. return (values, actions, log_probs)
def _run_value_model(self, obs): """Runs value model.""" n_devices = fastmath.device_count() weights = tl.for_n_devices(self._value_eval_model.weights, n_devices) state = tl.for_n_devices(self._value_eval_model.state, n_devices) rng = self._value_eval_model.rng # TODO(henrykm): the line below fails on TPU with the error # ValueError: Number of devices (8) does not evenly divide batch size (1). obs_batch = obs.shape[0] if n_devices > obs_batch: obs = jnp.repeat(obs, int(n_devices / obs_batch), axis=0) values, _ = self._value_eval_jit(obs, weights, state, rng) values = values[:obs_batch] values *= self._value_network_scale return values
def __init__(self, loss_layer, optimizer, n_devices=None): self._loss_layer = loss_layer self._optimizer = optimizer self._n_devices = n_devices or fastmath.device_count() # optimizer slots and opt_params may need to be replicated self._slots, self._opt_params = tl.for_n_devices( (self._optimizer.slots, self._optimizer.opt_params), self._n_devices) # accelerated version of loss layer to replicate weights and state self._accelerated_loss_layer = tl.Accelerate( loss_layer, n_devices=n_devices) # Signature: # (batch, weights, state, rng) -> ((loss, state), gradients) self._forward_and_backward_fn = ( fastmath.value_and_grad( loss_layer.pure_fn, argnums=1, # arg1 of pure_fn: weights has_aux=True)) # return (loss, state), gradients # Signature: # (weights, slots), step, opt_params, batch, state, rng -> # (weights, slots), state, stats self._accelerated_update_fn = ( _accelerate_update_fn( self._forward_and_backward_fn, self._optimizer, n_devices=self._n_devices, accelerate=True, ) )
def _run_value_model(self, observations, dist_inputs): if dist_inputs is None: dist_inputs = jnp.zeros(observations.shape[:2] + (self._policy_dist.n_inputs, )) actions = None if self._q_value: if self._sample_all_discrete_actions: # Since we want to sample all actions, start by creating their list. act = np.arange(self._vocab_size) # Now act is a vector [0, ..., vocab_size-1], but we'll need to tile it. # Add extra dimenstions so it's the same dimensionality as dist_inputs. act = jnp.reshape(act, [-1] + [1] * (len(dist_inputs.shape) - 1)) # Now act is [vocab_size, 1, ..., 1], dimensionality of dist_inputs. dist_inputs = jnp.broadcast_to( dist_inputs, (self._q_value_n_samples, ) + dist_inputs.shape) if self._sample_all_discrete_actions: actions = act + jnp.zeros(dist_inputs.shape[:-1], dtype=jnp.int32) actions = jnp.swapaxes(actions, 0, 1) # Swapping the n_samples and batch_size axes, so the input is split # between accelerators along the batch_size axis. dist_inputs = jnp.swapaxes(dist_inputs, 0, 1) if not self._sample_all_discrete_actions: actions = self._policy_dist.sample(dist_inputs) log_probs = self._policy_dist.log_prob(dist_inputs, actions) obs = observations obs = jnp.reshape(obs, [obs.shape[0], 1] + list(obs.shape[1:])) inputs = (obs, actions) else: log_probs = None inputs = (observations, ) n_devices = fastmath.device_count() weights = tl.for_n_devices(self._value_eval_model.weights, n_devices) state = tl.for_n_devices(self._value_eval_model.state, n_devices) rng = self._value_eval_model.rng values, _ = self._value_eval_jit(inputs, weights, state, rng) values *= self._value_network_scale values = jnp.squeeze(values, axis=-1) # Remove the singleton depth dim. return (values, actions, log_probs)
def one_step(self, batch, rng, step=0, learning_rate=None): """Updates loss layer weights/state and optimizer slots by running one step. Args: batch: Batch of data to use for optimization. rng: Random number generator to use for running this step. step: Which step of the training are we running. learning_rate: Learning rate to use instead of the default one. Returns: Tuple (loss, stats) with new values from one step of training, where stats are current optimizer statistics. """ # Update the learning rate if needed. if learning_rate is not None: self._opt_params['learning_rate'] = tl.for_n_devices( learning_rate, self._n_devices) # batch needs to be split across the local devices -- the difference # between _for_n_devices and _reshape_by_device is that the latter splits # the batch dim to batch // n_devices, vs _for_n_devices # broadcasts/replicates to n_devices dimension. if self._n_devices > 1: batch = tl.reshape_by_device(batch, self._n_devices) # separate rng needs to be created for each device if self._n_devices > 1: rng = jnp.stack(fastmath.random.split(rng, self._n_devices)) weights = self._accelerated_loss_layer.weights state = self._accelerated_loss_layer.state if logging.vlog_is_on(1) and ((step & step - 1) == 0): # Prints every power of two, if debugging is enabled. logging.info('step[%d]', step) logging.info('opt_params[%s]', self._opt_params) logging.info('slots[%s]', self._slots) logging.info('weights[%s]', weights) logging.info('state[%s]', state) # NOTE: stats is a replicated dictionary of key to jnp arrays. (new_weights, new_slots), new_state, stats = self._accelerated_update_fn( (weights, self._slots), step, self._opt_params, batch, state, rng) if logging.vlog_is_on(1) and ((step & step - 1) == 0): logging.info('updated weights[%s]', new_weights) logging.info('stats[%s]', stats) self._accelerated_loss_layer.weights = new_weights self._accelerated_loss_layer.state = new_state self._slots = new_slots self._optimizer.slots = self._unreplicate(self._slots) return stats['loss'], stats
def _run_value_model(self, obs, use_eval_model=True): """Runs value model.""" n_devices = fastmath.device_count() if use_eval_model: weights = tl.for_n_devices(self._value_eval_model.weights, n_devices) state = tl.for_n_devices(self._value_eval_model.state, n_devices) rng = self._value_eval_model.rng else: # TODO(henrykm): this strangely looking solution address the problem that # value_batches_stream calls _run_value_model _once_ before # the trainer is initialized. try: weights = tl.for_n_devices(self._value_trainer.model_weights, n_devices) state = tl.for_n_devices(self._value_trainer.model_state, n_devices) rng = self._value_trainer._rng # pylint: disable=protected-access except AttributeError: weights = tl.for_n_devices(self._value_eval_model.weights, n_devices) state = tl.for_n_devices(self._value_eval_model.state, n_devices) rng = self._value_eval_model.rng # TODO(henrykm): the line below fails on TPU with the error # ValueError: Number of devices (8) does not evenly divide batch size (1). obs_batch = obs.shape[0] if n_devices > obs_batch: obs = jnp.repeat(obs, int(n_devices / obs_batch), axis=0) values, _ = self._value_eval_jit(obs, weights, state, rng) values = values[:obs_batch] values *= self._value_network_scale return values
def one_step(self, batch, rng, step=0, learning_rate=None): """Runs one training step, to update model and optimizer parameters. Args: batch: Batch of labeled training data. rng: Single-use random number generator (JAX PRNG key). step: Training step number. learning_rate: Learning rate for the optimizer; if None, use optimizer's default learning rate. Returns: Tuple of (loss, optimizer_stats), with the newly computed loss and updated stats as reported by the optimizer. """ if learning_rate is not None: self._opt_params['learning_rate'] = tl.for_n_devices( learning_rate, self._n_devices) # Split the batch across devices (batch_dim --> batch_dim // n_devices) # and create new rng's 1-1 with devices. if self._n_devices > 1: batch = tl.reshape_by_device(batch, self._n_devices) rng = jnp.stack(fastmath.random.split(rng, self._n_devices)) weights = self._accelerated_model_with_loss.weights state = self._accelerated_model_with_loss.state if logging.vlog_is_on(1) and ((step & step - 1) == 0): # Prints every power of two, if debugging is enabled. logging.info('step[%d]', step) logging.info('opt_params[%s]', self._opt_params) logging.info('slots[%s]', self._slots) logging.info('weights[%s]', weights) logging.info('state[%s]', state) # NOTE: stats is a replicated dictionary of key to jnp arrays. (new_weights, new_slots), new_state, stats = self._accelerated_update_fn( (weights, self._slots), step, self._opt_params, batch, state, rng) if logging.vlog_is_on(1) and ((step & step - 1) == 0): logging.info('updated weights[%s]', new_weights) logging.info('stats[%s]', stats) self._accelerated_model_with_loss.weights = new_weights self._accelerated_model_with_loss.state = new_state self._slots = new_slots self._optimizer.slots = self._unreplicate(self._slots) return stats['loss'], stats
def __init__(self, model_with_loss, optimizer, n_devices=None, adasum=False): self._model_with_loss = model_with_loss self._optimizer = optimizer self._n_devices = n_devices or fastmath.local_device_count() self._adasum = adasum # optimizer slots and opt_params may need to be replicated self._slots, self._opt_params = tl.on_cpu( tl.for_n_devices( (self._optimizer.slots, self._optimizer.opt_params), self._n_devices)) # accelerated version of model+loss to replicate weights and state self._accelerated_model_with_loss = tl.Accelerate(model_with_loss, n_devices=n_devices) # Signature: # (batch, weights, state, rng) -> ((loss, state), gradients) self._forward_and_backward_fn = ( fastmath.value_and_grad( model_with_loss.pure_fn, argnums=1, # arg1 of pure_fn: weights has_aux=True)) # return (loss, state), gradients # Signature: # (weights, slots), step, opt_params, batch, state, rng -> # (weights, slots), state, stats self._accelerated_update_fn = (_accelerate_update_fn( self._forward_and_backward_fn, self._optimizer, n_devices=self._n_devices, accelerate=True, adasum=self._adasum))
def _for_n_devices(self, x): """Replicates/broadcasts `x` for n devices if `self.n_devicess > 1`.""" return tl.for_n_devices(x, self.n_devices) # pylint: disable=protected-access
def _for_n_devices(self, x): """Replicates/broadcasts `x` for n devices if `self.n_devicess > 1`.""" return tl.for_n_devices(x, self.n_devices)
def one_step(self, batch, rng, step=0, learning_rate=None): """Updates layers weights/state and optimizers slots by running one step. Args: batch: Batch of data to use for optimization. rng: Random number generator to use for running this step. step: Which step of the training are we running. learning_rate: Learning rate to use instead of the default one. Returns: Tuple (loss, stats) with new values from one step of training, where stats are all optimizer statistics. """ # Update the learning rate if needed. if learning_rate is not None: self._replicated_loss_opt_params['learning_rate'] = tl.for_n_devices( learning_rate, self._n_devices) for (std_op, rev_ops) in self._replicated_opt_params: std_op['learning_rate'] = tl.for_n_devices( learning_rate, self._n_devices) for op in rev_ops: op['learning_rate'] = tl.for_n_devices( learning_rate, self._n_devices) # Batch needs to be split across the local devices -- the difference # between _for_n_devices and _reshape_by_device is that the latter splits # the batch dim to batch // n_devices, vs _for_n_devices # broadcasts/replicates to n_devices dimension. if self._n_devices > 1: batch = tl.reshape_by_device(batch, self._n_devices) step = jnp.repeat(step, self._n_devices) # Create separate rng for each device and layer. if self._n_devices == 1: rngs = fastmath.random.split(rng, self._n_layers) else: # Splitting by device first to be identical with default trainer. per_device_rng = fastmath.random.split(rng, self._n_devices) per_device_rngs = [ fastmath.random.split(r, self._n_layers) for r in per_device_rng] rngs = [jnp.stack([r[i] for r in per_device_rngs]) for i in range(self._n_layers)] # Group rngs by layer blocks. rng_blocks, rng_i = [], 0 for _, rev_layers in self._blocks: l = len(rev_layers) rng_blocks.append((rngs[rng_i], rngs[rng_i + 1: rng_i + l + 1])) rng_i += l + 1 # Run the layers forward upto the loss layer. stack = batch block_inputs_states = [] for i, (std_layer, rev_layers) in enumerate(self._blocks): acc_std_layer_fn, acc_rev_layer_fns = self._accelerated_layer_fns[i] std_rng, rev_rngs = rng_blocks[i] # Run the standard layer. stack, std_inputs, std_state = self._run_forward_standard( stack, std_layer, acc_std_layer_fn, std_rng) # Run the reversible layers and collect old and new states. stack, rev_old_states, rev_new_states = self._run_forward_reversible( stack, rev_layers, acc_rev_layer_fns, rev_rngs) block_inputs_states.append( ((std_inputs, std_state), (rev_old_states, rev_new_states))) # Run the loss layer forward and backward with optimizer update. loss_state = self._replicate(self._loss_layer.state) loss_inputs = cb.inputs_from_stack(stack, self._loss_layer.n_in) loss_stats, grad_stack = self._run_backward_standard( None, step, self._loss_layer, loss_inputs, loss_state, self._loss_fbo, rngs[-1], self._loss_opt, self._replicated_loss_opt_params) stats = [loss_stats] # Run the layers backward and run optimizer updates. for i in range(len(self._blocks) - 1, -1, -1): std_layer, rev_layers = self._blocks[i] (std_inputs, std_state), (rev_old_states, rev_new_states) = block_inputs_states[i] std_fbo, rev_fbos = self._fbos[i] std_opt, rev_opts = self._optimizers[i] std_rng, rev_rngs = rng_blocks[i] repl_std_opt_params, repl_rev_opts_params = self._replicated_opt_params[i] # Run reversible layers backward with optimizer update. stack, grad_stack, new_stats = self._run_backward_reversible( stack, grad_stack, step, rev_layers, rev_fbos, rev_old_states, rev_new_states, rev_rngs, rev_opts, repl_rev_opts_params) stats.extend(new_stats) # Run the standard layer forward-and-backward pass and optimizer update. std_layer_stats, grad_stack = self._run_backward_standard( grad_stack, step, std_layer, std_inputs, std_state, std_fbo, std_rng, std_opt, repl_std_opt_params) stack = cb.outputs_onto_stack( # Put layer inputs on the stack. std_inputs, stack, std_layer.n_out) stats.append(std_layer_stats) # Join stats from different optimizers into one. joint_stats = {} for i, stat in enumerate(reversed(stats)): for k, v in stat.items(): joint_stats[f'layer{i}/' + k] = v return stats[0]['loss'], joint_stats
def _replicate(self, x): if self._n_devices > 1: return tl.for_n_devices(x, self._n_devices) return tl.on_accelerator(x)
def slots(self, slots): """Sets the slots of the optimizers and this class (replicated).""" self._optimizer.slots = slots self._slots = tl.on_cpu(tl.for_n_devices(slots, self._n_devices))
def one_step(self, batch, rng, step=0, learning_rate=None): """Updates layers weights/state and optimizers slots by running one step. Args: batch: Batch of data to use for optimization. rng: Random number generator to use for running this step. step: Which step of the training are we running. learning_rate: Learning rate to use instead of the default one. Returns: Tuple (loss, stats) with new values from one step of training, where stats are all optimizer statistics. """ # Update the learning rate if needed. if learning_rate is not None: for op in self._replicated_opt_params: op['learning_rate'] = tl.for_n_devices(learning_rate, self._n_devices) # Batch needs to be split across the local devices -- the difference # between _for_n_devices and _reshape_by_device is that the latter splits # the batch dim to batch // n_devices, vs _for_n_devices # broadcasts/replicates to n_devices dimension. if self._n_devices > 1: batch = tl.reshape_by_device(batch, self._n_devices) step = jnp.repeat(step, self._n_devices) # Separate rng needs to be created for each device. if self._n_devices == 1: rngs = fastmath.random.split(rng, len(self._reversible_layers) + 2) else: # Splitting by device first to be identical with default trainer. per_device_rng = fastmath.random.split(rng, self._n_devices) per_device_rngs = [ fastmath.random.split(r, len(self._reversible_layers) + 2) for r in per_device_rng ] rngs = [ jnp.stack([r[i] for r in per_device_rngs]) for i in range(len(self._reversible_layers) + 2) ] # Run the layers forward upto the loss layer. stack = batch # Run the first layer. first_layer_inputs = _inputs_from_stack(self._first_layer, stack) first_layer_weights = self._replicate(self._first_layer.weights) first_layer_state = self._replicate(self._first_layer.state) outputs, first_layer_new_state = self._accelerated_first_layer_fn( first_layer_inputs, first_layer_weights, first_layer_state, rngs[0]) stack = _outputs_onto_stack(self._first_layer, outputs, stack) # Run the reversible layers and collect old and new states. old_states, new_states = [], [] for i, layer in enumerate(self._reversible_layers): weights = self._replicate( layer.weights) # also copies cpu -> accelerator state = self._replicate(layer.state) old_states.append(state) inputs = _inputs_from_stack(layer, stack) outputs, new_state = self._accelerated_reversible_layers_fns[i]( inputs, weights, state, rngs[i + 1]) stack = _outputs_onto_stack(layer, outputs, stack) new_states.append(new_state) # Run the loss layer forward and backward with optimizer update. loss_weights = self._replicate(self._loss_layer.weights) loss_state = self._replicate(self._loss_layer.state) loss_inputs = _inputs_from_stack(self._loss_layer, stack) loss_slots = self._replicate(self._optimizers[-1].slots) new_weights, new_state, new_slots, grad_stack, loss_stats = self._loss_fbo( loss_inputs, loss_weights, loss_state, loss_slots, self._replicated_opt_params[-1], rngs[-1], step) stats = [loss_stats] self._loss_layer.weights = self._unreplicate( new_weights) # acceler. -> cpu self._loss_layer.state = self._unreplicate(new_state) self._optimizers[-1].slots = self._unreplicate(new_slots) # Run reversible layers backward with optimizer update. counter = -1 for layer, reverse_and_fbo, old_state, new_state, rng in reversed( list( zip(self._reversible_layers, self._reverse_and_fbos, old_states, new_states, rngs[1:-1]))): counter -= 1 # We are running backwards and reversing, so we get *outputs* from stack. outputs = _inputs_from_stack(layer, stack, layer.n_out) grads = _inputs_from_stack(layer, grad_stack, layer.n_out) slots = self._replicate(self._optimizers[counter].slots) opt_params = self._replicated_opt_params[counter] weights = self._replicate(layer.weights) # cpu -> accelerator new_weights, new_slots, inputs, grads, layer_stats = reverse_and_fbo( outputs, weights, old_state, new_state, slots, opt_params, rng, step, grads) layer.weights = self._unreplicate( new_weights) # accelerator -> cpu layer.state = self._unreplicate(new_state) self._optimizers[counter].slots = self._unreplicate(new_slots) stats.append(layer_stats) stack = _outputs_onto_stack(layer, inputs, stack, layer.n_out, layer.n_in) grad_stack = _outputs_onto_stack(layer, grads, grad_stack, layer.n_out, layer.n_in) # Run the first layer forward-and-backward pass and optimizer update. grads = _inputs_from_stack(self._first_layer, grad_stack, self._first_layer.n_out) slots = self._replicate(self._optimizers[0].slots) new_weights, new_state, new_slots, first_layer_stats = self._first_fbo( first_layer_inputs, first_layer_weights, first_layer_new_state, slots, self._replicated_opt_params[0], rngs[0], step, grads) stats.append(first_layer_stats) self._first_layer.weights = self._unreplicate(new_weights) self._first_layer.state = self._unreplicate(new_state) self._optimizers[0].slots = self._unreplicate(new_slots) return stats[0]['loss'], stats