def nan_reduction(a, axis=None, dtype=None, keepdims=False): a = array_ops.array(a) v = array_ops.array(init_val, dtype=a.dtype) return reduction(array_ops.where(isnan(a), v, a), axis=axis, dtype=dtype, keepdims=keepdims)
def logaddexp2(x1, x2): amax = maximum(x1, x2) delta = x1 - x2 return array_ops.where( isnan(delta), x1 + x2, # NaNs or infinities of the same sign. amax + log1p(exp2(-abs(delta))) / np.log(2))
def testWhere(self): self.assertAllEqual([[1.0, 1.0], [1.0, 1.0]], array_ops.where([True], [1.0, 1.0], [[0, 0], [0, 0]]))