示例#1
0
 def _set_num_threads(self, num_threads):
     if num_threads is None:
         num_threads = self.config.get('num_threads',None)
     if num_threads is None:
         self.logger.debug('Set num_threads automatically from ncpu')
     else:
         self.logger.debug('Set num_threads = %d',num_threads)
     treecorr.set_omp_threads(num_threads, self.logger)
示例#2
0
 def _set_num_threads(self, num_threads):
     if num_threads is None:
         num_threads = self.config.get('num_threads', None)
     if num_threads is None:
         self.logger.debug('Set num_threads automatically from ncpu')
     else:
         self.logger.debug('Set num_threads = %d', num_threads)
     treecorr.set_omp_threads(num_threads, self.logger)
示例#3
0
def test_zero_weight():
    # Based on test_ra_dec, but where many galaxies have w=0.
    # There used to be a bug where w=0 objects were not assigned to any patch.

    ngal = 10000
    s = 10.
    rng = np.random.RandomState(8675309)
    x = rng.normal(0, s, (ngal, ))
    y = rng.normal(
        0, s,
        (ngal, )) + 100  # Put everything at large y, so smallish angle on sky
    z = rng.normal(0, s, (ngal, ))
    w = np.zeros(ngal)
    w[np.random.choice(range(ngal), ngal // 10, replace=False)] = 1.0
    ra, dec = coord.CelestialCoord.xyz_to_radec(x, y, z)
    print('minra = ', np.min(ra) * coord.radians / coord.degrees)
    print('maxra = ', np.max(ra) * coord.radians / coord.degrees)
    print('mindec = ', np.min(dec) * coord.radians / coord.degrees)
    print('maxdec = ', np.max(dec) * coord.radians / coord.degrees)
    cat = treecorr.Catalog(ra=ra,
                           dec=dec,
                           ra_units='rad',
                           dec_units='rad',
                           w=w,
                           keep_zero_weight=True)
    treecorr.set_omp_threads(1)

    npatch = 16
    field = cat.getNField()
    t0 = time.time()
    p, c = field.run_kmeans(npatch)
    t1 = time.time()
    print('patches = ', np.unique(p))
    assert len(p) == cat.ntot
    assert min(p) == 0
    assert max(p) == npatch - 1
    print('w>0 patches = ', np.unique(p[w > 0]))
    print('w==0 patches = ', np.unique(p[w == 0]))
    assert set(p[w > 0]) == set(p[w == 0])
示例#4
0
def corr3(config, logger=None):
    """Run the full three-point correlation function code based on the parameters in the
    given config dict.

    The function print_corr3_params() will output information about the valid parameters
    that are expected to be in the config dict.

    Optionally a logger parameter maybe given, in which case it is used for logging.
    If not given, the logging will be based on the verbose and log_file parameters.

    :param config:  The configuration dict which defines what to do.
    :param logger:  If desired, a logger object for logging. (default: None, in which case
                    one will be built according to the config dict's verbose level.)
    """
    # Setup logger based on config verbose value
    if logger is None:
        logger = treecorr.config.setup_logger(
                treecorr.config.get(config,'verbose',int,1),
                config.get('log_file',None))

    # Check that config doesn't have any extra parameters.
    # (Such values are probably typos.)
    # Also convert the given parameters to the correct type, etc.
    config = treecorr.config.check_config(config, corr3_valid_params, corr3_aliases, logger)

    import pprint
    logger.debug('Using configuration dict:\n%s',pprint.pformat(config))

    if ( 'output_dots' not in config 
          and config.get('log_file',None) is None 
          and config['verbose'] >= 2 ):
        config['output_dots'] = True

    # Set the number of threads
    num_threads = config.get('num_threads',None)
    logger.debug('From config dict, num_threads = %d',num_threads)
    treecorr.set_omp_threads(num_threads, logger)

    # Read in the input files.  Each of these is a list.
    cat1 = treecorr.read_catalogs(config, 'file_name', 'file_list', 0, logger)
    if len(cat1) == 0:
        raise AttributeError("Either file_name or file_list is required")
    cat2 = treecorr.read_catalogs(config, 'file_name2', 'rand_file_list2', 1, logger)
    cat3 = treecorr.read_catalogs(config, 'file_name3', 'rand_file_list3', 1, logger)
    rand1 = treecorr.read_catalogs(config, 'rand_file_name', 'rand_file_list', 0, logger)
    rand2 = treecorr.read_catalogs(config, 'rand_file_name2', 'rand_file_list2', 1, logger)
    rand3 = treecorr.read_catalogs(config, 'rand_file_name3', 'rand_file_list3', 1, logger)
    if len(cat2) == 0 and len(rand2) > 0:
        raise AttributeError("rand_file_name2 is invalid without file_name2")
    if len(cat3) == 0 and len(rand3) > 0:
        raise AttributeError("rand_file_name3 is invalid without file_name3")
    logger.info("Done reading input catalogs")

    # Do GGG correlation function if necessary
    if 'ggg_file_name' in config: #or 'm3_file_name' in config:
        logger.info("Start GGG calculations...")
        ggg = treecorr.GGGCorrelation(config,logger)
        ggg.process(cat1,cat2,cat3)
        logger.info("Done GGG calculations.")
        if 'ggg_file_name' in config:
            ggg.write(config['ggg_file_name'])
        if 'm3_file_name' in config:
            ggg.writeMapSq(config['m3_file_name'])

    # Do NNN correlation function if necessary
    if 'nnn_file_name' in config:
        if len(rand1) == 0:
            raise AttributeError("rand_file_name is required for NNN correlation")
        if len(cat2) > 0 and len(rand2) == 0:
            raise AttributeError("rand_file_name2 is required for NNN cross-correlation")
        if len(cat3) > 0 and len(rand3) == 0:
            raise AttributeError("rand_file_name3 is required for NNN cross-correlation")
        if (len(cat2) > 0) != (len(cat3) > 0):
            raise NotImplementedError(
                "Cannot yet handle 3-point corrleations with only two catalogs. "+
                "Need both cat2 and cat3.")
        logger.info("Start DDD calculations...")
        ddd = treecorr.NNNCorrelation(config,logger)
        ddd.process(cat1,cat2,cat3)
        logger.info("Done DDD calculations.")

        if len(cat2) == 0:
            rrr = treecorr.NNNCorrelation(config,logger)
            rrr.process(rand1)
            logger.info("Done RRR calculations.")

            if config['nnn_statistic'] == 'compensated':
                drr = treecorr.NNNCorrelation(config,logger)
                drr.process(cat1,rand2,rand3)
                logger.info("Done DRR calculations.")
                ddr = treecorr.NNNCorrelation(config,logger)
                ddr.process(cat1,cat2,rand3)
                logger.info("Done DDR calculations.")
                ddd.write(config['nnn_file_name'],rrr,drr,ddr)
            else:
                ddd.write(config['nnn_file_name'],rrr)
        else:
            rrr = treecorr.NNNCorrelation(config,logger)
            rrr.process(rand1,rand2,rand3)
            logger.info("Done RRR calculations.")

            if config['nnn_statistic'] == 'compensated':
                drr = treecorr.NNNCorrelation(config,logger)
                drr.process(cat1,rand2,rand3)
                logger.info("Done DRR calculations.")
                ddr = treecorr.NNNCorrelation(config,logger)
                ddr.process(cat1,cat2,rand3)
                logger.info("Done DDR calculations.")
                rdr = treecorr.NNNCorrelation(config,logger)
                rdr.process(rand1,cat2,rand3)
                logger.info("Done RDR calculations.")
                rrd = treecorr.NNNCorrelation(config,logger)
                rrd.process(rand1,rand2,cat3)
                logger.info("Done RRD calculations.")
                drd = treecorr.NNNCorrelation(config,logger)
                drd.process(cat1,rand2,cat3)
                logger.info("Done DRD calculations.")
                rdd = treecorr.NNNCorrelation(config,logger)
                rdd.process(rand1,cat2,cat3)
                logger.info("Done RDD calculations.")
                ddd.write(config['nnn_file_name'],rrr,drr,ddr,rdr,rrd,drd,rdd)
            else:
                ddd.write(config['nnn_file_name'],rrr)

    # Do KKK correlation function if necessary
    if 'kkk_file_name' in config:
        logger.info("Start KKK calculations...")
        kkk = treecorr.KKKCorrelation(config,logger)
        kkk.process(cat1,cat2,cat3)
        logger.info("Done KKK calculations.")
        kkk.write(config['kkk_file_name'])

    # Do NNG correlation function if necessary
    if False:
    #if 'nng_file_name' in config or 'nnm_file_name' in config:
        if len(cat3) == 0:
            raise AttributeError("file_name3 is required for nng correlation")
        logger.info("Start NNG calculations...")
        nng = treecorr.NNGCorrelation(config,logger)
        nng.process(cat1,cat2,cat3)
        logger.info("Done NNG calculation.")

        # The default ng_statistic is compensated _iff_ rand files are given.
        rrg = None
        if len(rand1) == 0:
            if config.get('nng_statistic',None) == 'compensated':
                raise AttributeError("rand_files is required for nng_statistic = compensated")
        elif config.get('nng_statistic','compensated') == 'compensated':
            rrg = treecorr.NNGCorrelation(config,logger)
            rrg.process(rand1,rand1,cat2)
            logger.info("Done RRG calculation.")

        if 'nng_file_name' in config:
            nng.write(config['nng_file_name'], rrg)
        if 'nnm_file_name' in config:
            nng.writeNNMap(config['nnm_file_name'], rrg)


    # Do NNK correlation function if necessary
    if False:
    #if 'nnk_file_name' in config:
        if len(cat3) == 0:
            raise AttributeError("file_name3 is required for nnk correlation")
        logger.info("Start NNK calculations...")
        nnk = treecorr.NNKCorrelation(config,logger)
        nnk.process(cat1,cat2,cat3)
        logger.info("Done NNK calculation.")

        rrk = None
        if len(rand1) == 0:
            if config.get('nnk_statistic',None) == 'compensated':
                raise AttributeError("rand_files is required for nnk_statistic = compensated")
        elif config.get('nnk_statistic','compensated') == 'compensated':
            rrk = treecorr.NNKCorrelation(config,logger)
            rrk.process(rand1,rand1,cat2)
            logger.info("Done RRK calculation.")

        nnk.write(config['nnk_file_name'], rrk)

    # Do KKG correlation function if necessary
    if False:
    #if 'kkg_file_name' in config:
        if len(cat3) == 0:
            raise AttributeError("file_name3 is required for kkg correlation")
        logger.info("Start KKG calculations...")
        kkg = treecorr.KKGCorrelation(config,logger)
        kkg.process(cat1,cat2,cat3)
        logger.info("Done KKG calculation.")
        kkg.write(config['kkg_file_name'])
示例#5
0
def corr2(config, logger=None):
    """Run the full two-point correlation function code based on the parameters in the
    given config dict.

    The function print_corr2_params() will output information about the valid parameters
    that are expected to be in the config dict.

    Optionally a logger parameter maybe given, in which case it is used for logging.
    If not given, the logging will be based on the verbose and log_file parameters.

    :param config:  The configuration dict which defines what to do.
    :param logger:  If desired, a logger object for logging. (default: None, in which case
                    one will be built according to the config dict's verbose level.)
    """
    # Setup logger based on config verbose value
    if logger is None:
        logger = treecorr.config.setup_logger(
                treecorr.config.get(config,'verbose',int,1),
                config.get('log_file',None))

    # Check that config doesn't have any extra parameters.
    # (Such values are probably typos.)
    # Also convert the given parameters to the correct type, etc.
    config = treecorr.config.check_config(config, corr2_valid_params, corr2_aliases, logger)

    import pprint
    logger.debug('Using configuration dict:\n%s',pprint.pformat(config))

    if ( 'output_dots' not in config 
          and config.get('log_file',None) is None 
          and config['verbose'] >= 2 ):
        config['output_dots'] = True

    # Set the number of threads
    num_threads = config.get('num_threads',None)
    logger.debug('From config dict, num_threads = %s',num_threads)
    treecorr.set_omp_threads(num_threads, logger)

    # Read in the input files.  Each of these is a list.
    cat1 = treecorr.read_catalogs(config, 'file_name', 'file_list', 0, logger)
    if len(cat1) == 0:
        raise AttributeError("Either file_name or file_list is required")
    cat2 = treecorr.read_catalogs(config, 'file_name2', 'file_list2', 1, logger)
    rand1 = treecorr.read_catalogs(config, 'rand_file_name', 'rand_file_list', 0, logger)
    rand2 = treecorr.read_catalogs(config, 'rand_file_name2', 'rand_file_list2', 1, logger)
    if len(cat2) == 0 and len(rand2) > 0:
        raise AttributeError("rand_file_name2 is invalid without file_name2")
    logger.info("Done reading input catalogs")

    # Do GG correlation function if necessary
    if 'gg_file_name' in config or 'm2_file_name' in config:
        logger.warning("Performing GG calculations...")
        gg = treecorr.GGCorrelation(config,logger)
        gg.process(cat1,cat2)
        logger.info("Done GG calculations.")
        if 'gg_file_name' in config:
            gg.write(config['gg_file_name'])
            logger.warning("Wrote GG correlation to %s",config['gg_file_name'])
        if 'm2_file_name' in config:
            gg.writeMapSq(config['m2_file_name'], m2_uform=config['m2_uform'])
            logger.warning("Wrote Mapsq values to %s",config['m2_file_name'])

    # Do NG correlation function if necessary
    if 'ng_file_name' in config or 'nm_file_name' in config or 'norm_file_name' in config:
        if len(cat2) == 0:
            raise AttributeError("file_name2 is required for ng correlation")
        logger.warning("Performing NG calculations...")
        ng = treecorr.NGCorrelation(config,logger)
        ng.process(cat1,cat2)
        logger.info("Done NG calculation.")

        # The default ng_statistic is compensated _iff_ rand files are given.
        rg = None
        if len(rand1) == 0:
            if config.get('ng_statistic',None) == 'compensated':
                raise AttributeError("rand_files is required for ng_statistic = compensated")
        elif config.get('ng_statistic','compensated') == 'compensated':
            rg = treecorr.NGCorrelation(config,logger)
            rg.process(rand1,cat2)
            logger.info("Done RG calculation.")

        if 'ng_file_name' in config:
            ng.write(config['ng_file_name'], rg)
            logger.warning("Wrote NG correlation to %s",config['ng_file_name'])
        if 'nm_file_name' in config:
            ng.writeNMap(config['nm_file_name'], rg, m2_uform=config['m2_uform'])
            logger.warning("Wrote NMap values to %s",config['nm_file_name'])

        if 'norm_file_name' in config:
            gg = treecorr.GGCorrelation(config,logger)
            gg.process(cat2)
            logger.info("Done GG calculation for norm")
            dd = treecorr.NNCorrelation(config,logger)
            dd.process(cat1)
            logger.info("Done DD calculation for norm")
            rr = treecorr.NNCorrelation(config,logger)
            rr.process(rand1)
            logger.info("Done RR calculation for norm")
            dr = None
            if config['nn_statistic'] == 'compensated':
                dr = treecorr.NNCorrelation(config,logger)
                dr.process(cat1,rand1)
                logger.info("Done DR calculation for norm")
            ng.writeNorm(config['norm_file_name'],gg,dd,rr,dr,rg,m2_uform=config['m2_uform'])
            logger.warning("Wrote Norm values to %s",config['norm_file_name'])

    # Do NN correlation function if necessary
    if 'nn_file_name' in config:
        if len(rand1) == 0:
            raise AttributeError("rand_file_name is required for NN correlation")
        if len(cat2) > 0 and len(rand2) == 0:
            raise AttributeError("rand_file_name2 is required for NN cross-correlation")
        logger.warning("Performing DD calculations...")
        dd = treecorr.NNCorrelation(config,logger)
        dd.process(cat1,cat2)
        logger.info("Done DD calculations.")

        dr = None
        rd = None
        if len(cat2) == 0:
            logger.warning("Performing RR calculations...")
            rr = treecorr.NNCorrelation(config,logger)
            rr.process(rand1)
            logger.info("Done RR calculations.")

            if config['nn_statistic'] == 'compensated':
                logger.warning("Performing DR calculations...")
                dr = treecorr.NNCorrelation(config,logger)
                dr.process(cat1,rand1)
                logger.info("Done DR calculations.")
        else:
            logger.warning("Performing RR calculations...")
            rr = treecorr.NNCorrelation(config,logger)
            rr.process(rand1,rand2)
            logger.info("Done RR calculations.")

            if config['nn_statistic'] == 'compensated':
                logger.warning("Performing DR calculations...")
                dr = treecorr.NNCorrelation(config,logger)
                dr.process(cat1,rand2)
                logger.info("Done DR calculations.")
                rd = treecorr.NNCorrelation(config,logger)
                rd.process(rand1,cat2)
                logger.info("Done RD calculations.")
        dd.write(config['nn_file_name'],rr,dr,rd)
        logger.warning("Wrote NN correlation to %s",config['nn_file_name'])

    # Do KK correlation function if necessary
    if 'kk_file_name' in config:
        logger.warning("Performing KK calculations...")
        kk = treecorr.KKCorrelation(config,logger)
        kk.process(cat1,cat2)
        logger.info("Done KK calculations.")
        kk.write(config['kk_file_name'])
        logger.warning("Wrote KK correlation to %s",config['kk_file_name'])

    # Do NG correlation function if necessary
    if 'nk_file_name' in config:
        if len(cat2) == 0:
            raise AttributeError("file_name2 is required for nk correlation")
        logger.warning("Performing NK calculations...")
        nk = treecorr.NKCorrelation(config,logger)
        nk.process(cat1,cat2)
        logger.info("Done NK calculation.")

        rk = None
        if len(rand1) == 0:
            if config.get('nk_statistic',None) == 'compensated':
                raise AttributeError("rand_files is required for nk_statistic = compensated")
        elif config.get('nk_statistic','compensated') == 'compensated':
            rk = treecorr.NKCorrelation(config,logger)
            rk.process(rand1,cat2)
            logger.info("Done RK calculation.")

        nk.write(config['nk_file_name'], rk)
        logger.warning("Wrote NK correlation to %s",config['nk_file_name'])

    # Do KG correlation function if necessary
    if 'kg_file_name' in config:
        if len(cat2) == 0:
            raise AttributeError("file_name2 is required for kg correlation")
        logger.warning("Performing KG calculations...")
        kg = treecorr.KGCorrelation(config,logger)
        kg.process(cat1,cat2)
        logger.info("Done KG calculation.")
        kg.write(config['kg_file_name'])
        logger.warning("Wrote KG correlation to %s",config['kg_file_name'])
示例#6
0
def test_omp():
    """Test setting the number of omp threads.
    """
    import multiprocessing

    # If num_threads <= 0 or None, get num from cpu_count
    cpus = multiprocessing.cpu_count()
    assert treecorr.set_omp_threads(0) > 0
    assert treecorr.set_omp_threads(0) <= cpus
    assert treecorr.set_omp_threads(None) > 0
    assert treecorr.set_omp_threads(None) <= cpus

    # If num_threads == 1, it should always set to 1
    assert treecorr.set_omp_threads(1) == 1

    # If num_threads > 1, it could be 1 or up to the input num_threads
    assert treecorr.set_omp_threads(2) >= 1
    assert treecorr.set_omp_threads(2) <= 2
    assert treecorr.set_omp_threads(20) >= 1
    assert treecorr.set_omp_threads(20) <= 20

    # Repeat and check that appropriate messages are emitted
    with CaptureLog() as cl:
        num_threads = treecorr.set_omp_threads(0, logger=cl.logger)
    assert "multiprocessing.cpu_count() = " in cl.output
    assert "Telling OpenMP to use %s threads" % cpus in cl.output

    with CaptureLog() as cl:
        treecorr.set_omp_threads(None, logger=cl.logger)
    assert "multiprocessing.cpu_count() = " in cl.output
    assert "Telling OpenMP to use %s threads" % cpus in cl.output

    with CaptureLog() as cl:
        treecorr.set_omp_threads(1, logger=cl.logger)
    assert "multiprocessing.cpu_count() = " not in cl.output
    assert "Telling OpenMP to use 1 threads" in cl.output
    assert "Using %s threads" % num_threads not in cl.output
    assert "Unable to use multiple threads" not in cl.output

    with CaptureLog() as cl:
        treecorr.set_omp_threads(2, logger=cl.logger)
    assert "multiprocessing.cpu_count() = " not in cl.output
    assert "Telling OpenMP to use 2 threads" in cl.output

    # It's hard to tell what happens in the next step, since we can't control what
    # treecorr._lib.SetOMPThreads does.  It depends on whether OpenMP is enabled and
    # how many cores are available.  So let's mock it up.
    if sys.version_info < (3, ): return  # mock only available on python 3
    from unittest import mock
    with mock.patch('treecorr._lib') as _lib:
        # First mock with OpenMP enables and able to use lots of threads
        _lib.SetOMPThreads = lambda x: x
        assert treecorr.set_omp_threads(20) == 20
        with CaptureLog() as cl:
            treecorr.set_omp_threads(20, logger=cl.logger)
        assert "OpenMP reports that it will use 20 threads" in cl.output
        assert "Using 20 threads" in cl.output

        # Next only 4 threads available
        _lib.SetOMPThreads = lambda x: 4 if x > 4 else x
        assert treecorr.set_omp_threads(20) == 4
        with CaptureLog() as cl:
            treecorr.set_omp_threads(20, logger=cl.logger)
        assert "OpenMP reports that it will use 4 threads" in cl.output
        assert "Using 4 threads" in cl.output

        assert treecorr.set_omp_threads(2) == 2
        with CaptureLog() as cl:
            treecorr.set_omp_threads(2, logger=cl.logger)
        assert "OpenMP reports that it will use 2 threads" in cl.output

        # Finally, no OpenMP
        _lib.SetOMPThreads = lambda x: 1
        assert treecorr.set_omp_threads(20) == 1
        with CaptureLog() as cl:
            treecorr.set_omp_threads(20, logger=cl.logger)
        assert "OpenMP reports that it will use 1 threads" in cl.output
        assert "Unable to use multiple threads" in cl.output
示例#7
0
文件: corr3.py 项目: mbaumer/TreeCorr
def corr3(config, logger=None):
    """Run the full three-point correlation function code based on the parameters in the
    given config dict.

    The function print_corr3_params() will output information about the valid parameters
    that are expected to be in the config dict.

    Optionally a logger parameter maybe given, in which case it is used for logging.
    If not given, the logging will be based on the verbose and log_file parameters.

    :param config:  The configuration dict which defines what to do.
    :param logger:  If desired, a logger object for logging. (default: None, in which case
                    one will be built according to the config dict's verbose level.)
    """
    # Setup logger based on config verbose value
    if logger is None:
        logger = treecorr.config.setup_logger(
            treecorr.config.get(config, 'verbose', int, 1),
            config.get('log_file', None))

    # Check that config doesn't have any extra parameters.
    # (Such values are probably typos.)
    # Also convert the given parameters to the correct type, etc.
    config = treecorr.config.check_config(config, corr3_valid_params,
                                          corr3_aliases, logger)

    import pprint
    logger.debug('Using configuration dict:\n%s', pprint.pformat(config))

    if ('output_dots' not in config and config.get('log_file', None) is None
            and config['verbose'] >= 2):
        config['output_dots'] = True

    # Set the number of threads
    num_threads = config.get('num_threads', None)
    logger.debug('From config dict, num_threads = %s', num_threads)
    treecorr.set_omp_threads(num_threads, logger)

    # Read in the input files.  Each of these is a list.
    cat1 = treecorr.read_catalogs(config, 'file_name', 'file_list', 0, logger)
    if len(cat1) == 0:
        raise AttributeError("Either file_name or file_list is required")
    cat2 = treecorr.read_catalogs(config, 'file_name2', 'rand_file_list2', 1,
                                  logger)
    cat3 = treecorr.read_catalogs(config, 'file_name3', 'rand_file_list3', 1,
                                  logger)
    rand1 = treecorr.read_catalogs(config, 'rand_file_name', 'rand_file_list',
                                   0, logger)
    rand2 = treecorr.read_catalogs(config, 'rand_file_name2',
                                   'rand_file_list2', 1, logger)
    rand3 = treecorr.read_catalogs(config, 'rand_file_name3',
                                   'rand_file_list3', 1, logger)
    if len(cat2) == 0 and len(rand2) > 0:
        raise AttributeError("rand_file_name2 is invalid without file_name2")
    if len(cat3) == 0 and len(rand3) > 0:
        raise AttributeError("rand_file_name3 is invalid without file_name3")
    logger.info("Done reading input catalogs")

    # Do GGG correlation function if necessary
    if 'ggg_file_name' in config:  #or 'm3_file_name' in config:
        logger.info("Start GGG calculations...")
        ggg = treecorr.GGGCorrelation(config, logger)
        ggg.process(cat1, cat2, cat3)
        logger.info("Done GGG calculations.")
        if 'ggg_file_name' in config:
            ggg.write(config['ggg_file_name'])
        if 'm3_file_name' in config:
            ggg.writeMapSq(config['m3_file_name'])

    # Do NNN correlation function if necessary
    if 'nnn_file_name' in config:
        if len(rand1) == 0:
            raise AttributeError(
                "rand_file_name is required for NNN correlation")
        if len(cat2) > 0 and len(rand2) == 0:
            raise AttributeError(
                "rand_file_name2 is required for NNN cross-correlation")
        if len(cat3) > 0 and len(rand3) == 0:
            raise AttributeError(
                "rand_file_name3 is required for NNN cross-correlation")
        if (len(cat2) > 0) != (len(cat3) > 0):
            raise NotImplementedError(
                "Cannot yet handle 3-point corrleations with only two catalogs. "
                + "Need both cat2 and cat3.")
        logger.info("Start DDD calculations...")
        ddd = treecorr.NNNCorrelation(config, logger)
        ddd.process(cat1, cat2, cat3)
        logger.info("Done DDD calculations.")

        if len(cat2) == 0:
            rrr = treecorr.NNNCorrelation(config, logger)
            rrr.process(rand1)
            logger.info("Done RRR calculations.")

            # For the next step, just make cat2 = cat3 = cat1 and rand2 = rand3 = rand1.
            cat2 = cat3 = cat1
            rand2 = rand3 = rand1
        else:
            rrr = treecorr.NNNCorrelation(config, logger)
            rrr.process(rand1, rand2, rand3)
            logger.info("Done RRR calculations.")

        if config['nnn_statistic'] == 'compensated':
            drr = treecorr.NNNCorrelation(config, logger)
            drr.process(cat1, rand2, rand3)
            logger.info("Done DRR calculations.")
            ddr = treecorr.NNNCorrelation(config, logger)
            ddr.process(cat1, cat2, rand3)
            logger.info("Done DDR calculations.")
            rdr = treecorr.NNNCorrelation(config, logger)
            rdr.process(rand1, cat2, rand3)
            logger.info("Done RDR calculations.")
            rrd = treecorr.NNNCorrelation(config, logger)
            rrd.process(rand1, rand2, cat3)
            logger.info("Done RRD calculations.")
            drd = treecorr.NNNCorrelation(config, logger)
            drd.process(cat1, rand2, cat3)
            logger.info("Done DRD calculations.")
            rdd = treecorr.NNNCorrelation(config, logger)
            rdd.process(rand1, cat2, cat3)
            logger.info("Done RDD calculations.")
            ddd.write(config['nnn_file_name'], rrr, drr, rdr, rrd, ddr, drd,
                      rdd)
        else:
            ddd.write(config['nnn_file_name'], rrr)

    # Do KKK correlation function if necessary
    if 'kkk_file_name' in config:
        logger.info("Start KKK calculations...")
        kkk = treecorr.KKKCorrelation(config, logger)
        kkk.process(cat1, cat2, cat3)
        logger.info("Done KKK calculations.")
        kkk.write(config['kkk_file_name'])

    # Do NNG correlation function if necessary
    if False:
        #if 'nng_file_name' in config or 'nnm_file_name' in config:
        if len(cat3) == 0:
            raise AttributeError("file_name3 is required for nng correlation")
        logger.info("Start NNG calculations...")
        nng = treecorr.NNGCorrelation(config, logger)
        nng.process(cat1, cat2, cat3)
        logger.info("Done NNG calculation.")

        # The default ng_statistic is compensated _iff_ rand files are given.
        rrg = None
        if len(rand1) == 0:
            if config.get('nng_statistic', None) == 'compensated':
                raise AttributeError(
                    "rand_files is required for nng_statistic = compensated")
        elif config.get('nng_statistic', 'compensated') == 'compensated':
            rrg = treecorr.NNGCorrelation(config, logger)
            rrg.process(rand1, rand1, cat2)
            logger.info("Done RRG calculation.")

        if 'nng_file_name' in config:
            nng.write(config['nng_file_name'], rrg)
        if 'nnm_file_name' in config:
            nng.writeNNMap(config['nnm_file_name'], rrg)

    # Do NNK correlation function if necessary
    if False:
        #if 'nnk_file_name' in config:
        if len(cat3) == 0:
            raise AttributeError("file_name3 is required for nnk correlation")
        logger.info("Start NNK calculations...")
        nnk = treecorr.NNKCorrelation(config, logger)
        nnk.process(cat1, cat2, cat3)
        logger.info("Done NNK calculation.")

        rrk = None
        if len(rand1) == 0:
            if config.get('nnk_statistic', None) == 'compensated':
                raise AttributeError(
                    "rand_files is required for nnk_statistic = compensated")
        elif config.get('nnk_statistic', 'compensated') == 'compensated':
            rrk = treecorr.NNKCorrelation(config, logger)
            rrk.process(rand1, rand1, cat2)
            logger.info("Done RRK calculation.")

        nnk.write(config['nnk_file_name'], rrk)

    # Do KKG correlation function if necessary
    if False:
        #if 'kkg_file_name' in config:
        if len(cat3) == 0:
            raise AttributeError("file_name3 is required for kkg correlation")
        logger.info("Start KKG calculations...")
        kkg = treecorr.KKGCorrelation(config, logger)
        kkg.process(cat1, cat2, cat3)
        logger.info("Done KKG calculation.")
        kkg.write(config['kkg_file_name'])
示例#8
0
def test_omp():
    """Test setting the number of omp threads.
    """
    import multiprocessing

    # If num_threads <= 0 or None, get num from cpu_count
    cpus = multiprocessing.cpu_count()
    assert treecorr.set_omp_threads(0) > 0
    assert treecorr.set_omp_threads(0) <= cpus
    assert treecorr.set_omp_threads(None) > 0
    assert treecorr.set_omp_threads(None) <= cpus

    # If num_threads == 1, it should always set to 1
    assert treecorr.set_omp_threads(1) == 1

    # If num_threads > 1, it could be 1 or up to the input num_threads
    assert treecorr.set_omp_threads(2) >= 1
    assert treecorr.set_omp_threads(2) <= 2
    assert treecorr.set_omp_threads(20) >= 1
    assert treecorr.set_omp_threads(20) <= 20

    # Repeat and check that appropriate messages are emitted
    with CaptureLog() as cl:
        num_threads = treecorr.set_omp_threads(0, logger=cl.logger)
    assert "multiprocessing.cpu_count() = " in cl.output
    assert "Telling OpenMP to use %s threads"%cpus in cl.output

    with CaptureLog() as cl:
        treecorr.set_omp_threads(None, logger=cl.logger)
    assert "multiprocessing.cpu_count() = " in cl.output
    assert "Telling OpenMP to use %s threads"%cpus in cl.output

    with CaptureLog() as cl:
        treecorr.set_omp_threads(1, logger=cl.logger)
    assert "multiprocessing.cpu_count() = " not in cl.output
    assert "Telling OpenMP to use 1 threads" in cl.output
    assert "Using %s threads"%num_threads not in cl.output
    assert "Unable to use multiple threads" not in cl.output

    with CaptureLog() as cl:
        treecorr.set_omp_threads(2, logger=cl.logger)
    assert "multiprocessing.cpu_count() = " not in cl.output
    assert "Telling OpenMP to use 2 threads" in cl.output

    # It's hard to tell what happens in the next step, since we can't control what
    # treecorr._lib.SetOMPThreads does.  It depends on whether OpenMP is enabled and
    # how many cores are available.  So let's mock it up.
    if sys.version_info < (3,): return  # mock only available on python 3
    from unittest import mock
    with mock.patch('treecorr.config._lib') as _lib:
        # First mock with OpenMP enables and able to use lots of threads
        _lib.SetOMPThreads = lambda x: x
        assert treecorr.set_omp_threads(20) == 20
        with CaptureLog() as cl:
            treecorr.set_omp_threads(20, logger=cl.logger)
        assert "OpenMP reports that it will use 20 threads" in cl.output
        assert "Using 20 threads" in cl.output

        # Next only 4 threads available
        _lib.SetOMPThreads = lambda x: 4 if x > 4 else x
        assert treecorr.set_omp_threads(20) == 4
        with CaptureLog() as cl:
            treecorr.set_omp_threads(20, logger=cl.logger)
        assert "OpenMP reports that it will use 4 threads" in cl.output
        assert "Using 4 threads" in cl.output

        assert treecorr.set_omp_threads(2) == 2
        with CaptureLog() as cl:
            treecorr.set_omp_threads(2, logger=cl.logger)
        assert "OpenMP reports that it will use 2 threads" in cl.output

        # Finally, no OpenMP
        _lib.SetOMPThreads = lambda x: 1
        assert treecorr.set_omp_threads(20) == 1
        with CaptureLog() as cl:
            treecorr.set_omp_threads(20, logger=cl.logger)
        assert "OpenMP reports that it will use 1 threads" in cl.output
        assert "Unable to use multiple threads" in cl.output
示例#9
0
文件: corr3.py 项目: ztq1996/TreeCorr
def corr3(config, logger=None):
    """Run the full three-point correlation function code based on the parameters in the
    given config dict.

    The function `print_corr3_params` will output information about the valid parameters
    that are expected to be in the config dict.

    Optionally a logger parameter maybe given, in which case it is used for logging.
    If not given, the logging will be based on the verbose and log_file parameters.

    :param config:  The configuration dict which defines what to do.
    :param logger:  If desired, a logger object for logging. (default: None, in which case
                    one will be built according to the config dict's verbose level.)
    """
    # Setup logger based on config verbose value
    if logger is None:
        logger = treecorr.config.setup_logger(
            treecorr.config.get(config, 'verbose', int, 1),
            config.get('log_file', None))

    # Check that config doesn't have any extra parameters.
    # (Such values are probably typos.)
    # Also convert the given parameters to the correct type, etc.
    config = treecorr.config.check_config(config, corr3_valid_params,
                                          corr3_aliases, logger)

    import pprint
    logger.debug('Using configuration dict:\n%s', pprint.pformat(config))

    if ('output_dots' not in config and config.get('log_file', None) is None
            and config['verbose'] >= 2):
        config['output_dots'] = True

    # Set the number of threads
    num_threads = config.get('num_threads', None)
    logger.debug('From config dict, num_threads = %s', num_threads)
    treecorr.set_omp_threads(num_threads, logger)

    # Read in the input files.  Each of these is a list.
    cat1 = treecorr.read_catalogs(config, 'file_name', 'file_list', 0, logger)
    cat2 = treecorr.read_catalogs(config, 'file_name2', 'rand_file_list2', 1,
                                  logger)
    cat3 = treecorr.read_catalogs(config, 'file_name3', 'rand_file_list3', 1,
                                  logger)
    rand1 = treecorr.read_catalogs(config, 'rand_file_name', 'rand_file_list',
                                   0, logger)
    rand2 = treecorr.read_catalogs(config, 'rand_file_name2',
                                   'rand_file_list2', 1, logger)
    rand3 = treecorr.read_catalogs(config, 'rand_file_name3',
                                   'rand_file_list3', 1, logger)
    if len(cat1) == 0:
        raise TypeError("Either file_name or file_list is required")
    if len(cat2) == 0: cat2 = None
    if len(cat3) == 0: cat3 = None
    if len(rand1) == 0: rand1 = None
    if len(rand2) == 0: rand2 = None
    if len(rand3) == 0: rand3 = None
    if cat2 is None and rand2 is not None:
        raise TypeError("rand_file_name2 is invalid without file_name2")
    if cat3 is None and rand3 is not None:
        raise TypeError("rand_file_name3 is invalid without file_name3")
    if (cat2 is None) != (cat3 is None):
        raise NotImplementedError(
            "Cannot yet handle 3-point corrleations with only two catalogs. " +
            "Need both cat2 and cat3.")
    logger.info("Done reading input catalogs")

    # Do GGG correlation function if necessary
    if 'ggg_file_name' in config or 'm3_file_name' in config:
        logger.warning("Performing GGG calculations...")
        ggg = treecorr.GGGCorrelation(config, logger)
        ggg.process(cat1, cat2, cat3)
        logger.info("Done GGG calculations.")
        if 'ggg_file_name' in config:
            ggg.write(config['ggg_file_name'])
            logger.warning("Wrote GGG correlation to %s",
                           config['ggg_file_name'])
        if 'm3_file_name' in config:
            ggg.writeMap3(config['m3_file_name'])
            logger.warning("Wrote Map3 values to %s", config['m3_file_name'])

    # Do NNN correlation function if necessary
    if 'nnn_file_name' in config:
        logger.warning("Performing DDD calculations...")
        ddd = treecorr.NNNCorrelation(config, logger)
        ddd.process(cat1, cat2, cat3)
        logger.info("Done DDD calculations.")

        drr = None
        rdr = None
        rrd = None
        ddr = None
        drd = None
        rdd = None
        if rand1 is None:
            if rand2 is not None or rand3 is not None:
                raise TypeError(
                    "rand_file_name is required if rand2 or rand3 is given")
            logger.warning(
                "No random catalogs given.  Only doing ntri calculation.")
            rrr = None
        elif cat2 is None:
            logger.warning("Performing RRR calculations...")
            rrr = treecorr.NNNCorrelation(config, logger)
            rrr.process(rand1)
            logger.info("Done RRR calculations.")

            # For the next step, just make cat2 = cat3 = cat1 and rand2 = rand3 = rand1.
            cat2 = cat3 = cat1
            rand2 = rand3 = rand1
        else:
            if rand2 is None:
                raise TypeError(
                    "rand_file_name2 is required when file_name2 is given")
            if cat3 is not None and rand3 is None:
                raise TypeError(
                    "rand_file_name3 is required when file_name3 is given")
            logger.warning("Performing RRR calculations...")
            rrr = treecorr.NNNCorrelation(config, logger)
            rrr.process(rand1, rand2, rand3)
            logger.info("Done RRR calculations.")

        if rrr is not None and config['nnn_statistic'] == 'compensated':
            logger.warning("Performing DRR calculations...")
            drr = treecorr.NNNCorrelation(config, logger)
            drr.process(cat1, rand2, rand3)
            logger.info("Done DRR calculations.")
            logger.warning("Performing DDR calculations...")
            ddr = treecorr.NNNCorrelation(config, logger)
            ddr.process(cat1, cat2, rand3)
            logger.info("Done DDR calculations.")
            logger.warning("Performing RDR calculations...")
            rdr = treecorr.NNNCorrelation(config, logger)
            rdr.process(rand1, cat2, rand3)
            logger.info("Done RDR calculations.")
            logger.warning("Performing RRD calculations...")
            rrd = treecorr.NNNCorrelation(config, logger)
            rrd.process(rand1, rand2, cat3)
            logger.info("Done RRD calculations.")
            logger.warning("Performing DRD calculations...")
            drd = treecorr.NNNCorrelation(config, logger)
            drd.process(cat1, rand2, cat3)
            logger.info("Done DRD calculations.")
            logger.warning("Performing RDD calculations...")
            rdd = treecorr.NNNCorrelation(config, logger)
            rdd.process(rand1, cat2, cat3)
            logger.info("Done RDD calculations.")
        ddd.write(config['nnn_file_name'], rrr, drr, rdr, rrd, ddr, drd, rdd)
        logger.warning("Wrote NNN correlation to %s", config['nnn_file_name'])

    # Do KKK correlation function if necessary
    if 'kkk_file_name' in config:
        logger.warning("Performing KKK calculations...")
        kkk = treecorr.KKKCorrelation(config, logger)
        kkk.process(cat1, cat2, cat3)
        logger.info("Done KKK calculations.")
        kkk.write(config['kkk_file_name'])
        logger.warning("Wrote KKK correlation to %s", config['kkk_file_name'])
示例#10
0
def corr3(config, logger=None):
    """Run the full three-point correlation function code based on the parameters in the
    given config dict.

    The function `print_corr3_params` will output information about the valid parameters
    that are expected to be in the config dict.

    Optionally a logger parameter maybe given, in which case it is used for logging.
    If not given, the logging will be based on the verbose and log_file parameters.

    :param config:  The configuration dict which defines what to do.
    :param logger:  If desired, a logger object for logging. (default: None, in which case
                    one will be built according to the config dict's verbose level.)
    """
    # Setup logger based on config verbose value
    if logger is None:
        logger = treecorr.config.setup_logger(
                treecorr.config.get(config,'verbose',int,1),
                config.get('log_file',None))

    # Check that config doesn't have any extra parameters.
    # (Such values are probably typos.)
    # Also convert the given parameters to the correct type, etc.
    config = treecorr.config.check_config(config, corr3_valid_params, corr3_aliases, logger)

    import pprint
    logger.debug('Using configuration dict:\n%s',pprint.pformat(config))

    if ( 'output_dots' not in config
          and config.get('log_file',None) is None
          and config['verbose'] >= 2 ):
        config['output_dots'] = True

    # Set the number of threads
    num_threads = config.get('num_threads',None)
    logger.debug('From config dict, num_threads = %s',num_threads)
    treecorr.set_omp_threads(num_threads, logger)

    # Read in the input files.  Each of these is a list.
    cat1 = treecorr.read_catalogs(config, 'file_name', 'file_list', 0, logger)
    cat2 = treecorr.read_catalogs(config, 'file_name2', 'rand_file_list2', 1, logger)
    cat3 = treecorr.read_catalogs(config, 'file_name3', 'rand_file_list3', 1, logger)
    rand1 = treecorr.read_catalogs(config, 'rand_file_name', 'rand_file_list', 0, logger)
    rand2 = treecorr.read_catalogs(config, 'rand_file_name2', 'rand_file_list2', 1, logger)
    rand3 = treecorr.read_catalogs(config, 'rand_file_name3', 'rand_file_list3', 1, logger)
    if len(cat1) == 0:
        raise TypeError("Either file_name or file_list is required")
    if len(cat2) == 0: cat2 = None
    if len(cat3) == 0: cat3 = None
    if len(rand1) == 0: rand1 = None
    if len(rand2) == 0: rand2 = None
    if len(rand3) == 0: rand3 = None
    if cat2 is None and rand2 is not None:
        raise TypeError("rand_file_name2 is invalid without file_name2")
    if cat3 is None and rand3 is not None:
        raise TypeError("rand_file_name3 is invalid without file_name3")
    if (cat2 is None) != (cat3 is None):
        raise NotImplementedError(
            "Cannot yet handle 3-point corrleations with only two catalogs. "+
            "Need both cat2 and cat3.")
    logger.info("Done reading input catalogs")

    # Do GGG correlation function if necessary
    if 'ggg_file_name' in config or 'm3_file_name' in config:
        logger.warning("Performing GGG calculations...")
        ggg = treecorr.GGGCorrelation(config,logger)
        ggg.process(cat1,cat2,cat3)
        logger.info("Done GGG calculations.")
        if 'ggg_file_name' in config:
            ggg.write(config['ggg_file_name'])
            logger.warning("Wrote GGG correlation to %s",config['ggg_file_name'])
        if 'm3_file_name' in config:
            ggg.writeMap3(config['m3_file_name'])
            logger.warning("Wrote Map3 values to %s",config['m3_file_name'])

    # Do NNN correlation function if necessary
    if 'nnn_file_name' in config:
        logger.warning("Performing DDD calculations...")
        ddd = treecorr.NNNCorrelation(config,logger)
        ddd.process(cat1,cat2,cat3)
        logger.info("Done DDD calculations.")

        drr = None
        rdr = None
        rrd = None
        ddr = None
        drd = None
        rdd = None
        if rand1 is None:
            if rand2 is not None or rand3 is not None:
                raise TypeError("rand_file_name is required if rand2 or rand3 is given")
            logger.warning("No random catalogs given.  Only doing ntri calculation.")
            rrr = None
        elif cat2 is None:
            logger.warning("Performing RRR calculations...")
            rrr = treecorr.NNNCorrelation(config,logger)
            rrr.process(rand1)
            logger.info("Done RRR calculations.")

            # For the next step, just make cat2 = cat3 = cat1 and rand2 = rand3 = rand1.
            cat2 = cat3 = cat1
            rand2 = rand3 = rand1
        else:
            if rand2 is None:
                raise TypeError("rand_file_name2 is required when file_name2 is given")
            if cat3 is not None and rand3 is None:
                raise TypeError("rand_file_name3 is required when file_name3 is given")
            logger.warning("Performing RRR calculations...")
            rrr = treecorr.NNNCorrelation(config,logger)
            rrr.process(rand1,rand2,rand3)
            logger.info("Done RRR calculations.")

        if rrr is not None and config['nnn_statistic'] == 'compensated':
            logger.warning("Performing DRR calculations...")
            drr = treecorr.NNNCorrelation(config,logger)
            drr.process(cat1,rand2,rand3)
            logger.info("Done DRR calculations.")
            logger.warning("Performing DDR calculations...")
            ddr = treecorr.NNNCorrelation(config,logger)
            ddr.process(cat1,cat2,rand3)
            logger.info("Done DDR calculations.")
            logger.warning("Performing RDR calculations...")
            rdr = treecorr.NNNCorrelation(config,logger)
            rdr.process(rand1,cat2,rand3)
            logger.info("Done RDR calculations.")
            logger.warning("Performing RRD calculations...")
            rrd = treecorr.NNNCorrelation(config,logger)
            rrd.process(rand1,rand2,cat3)
            logger.info("Done RRD calculations.")
            logger.warning("Performing DRD calculations...")
            drd = treecorr.NNNCorrelation(config,logger)
            drd.process(cat1,rand2,cat3)
            logger.info("Done DRD calculations.")
            logger.warning("Performing RDD calculations...")
            rdd = treecorr.NNNCorrelation(config,logger)
            rdd.process(rand1,cat2,cat3)
            logger.info("Done RDD calculations.")
        ddd.write(config['nnn_file_name'],rrr,drr,rdr,rrd,ddr,drd,rdd)
        logger.warning("Wrote NNN correlation to %s",config['nnn_file_name'])

    # Do KKK correlation function if necessary
    if 'kkk_file_name' in config:
        logger.warning("Performing KKK calculations...")
        kkk = treecorr.KKKCorrelation(config,logger)
        kkk.process(cat1,cat2,cat3)
        logger.info("Done KKK calculations.")
        kkk.write(config['kkk_file_name'])
        logger.warning("Wrote KKK correlation to %s",config['kkk_file_name'])