def dl_images(source_domain='stylebook.de', text_filter='', dl_dir='/data/jeremy/image_dbs/golden/', in_docker=True, visual_output=False): ''' dl everything in the images db, on the assumption that these are the most relevant to test our answers to :return: ''' if in_docker: db = pymongo.MongoClient('localhost', port=27017).mydb else: db = constants.db all = db.images.find({'domain': source_domain}) for doc in all: url = doc['image_urls'][0] if text_filter in url[0]: print url Utils.get_cv2_img_array(url, convert_url_to_local_filename=True, download=True, download_directory=dl_dir) else: print('skipping ' + url) #move the images with more than one person imutils.do_for_all_files_in_dir(imutils.one_person_per_image, dl_dir, visual_output=False)
def get_pd_results(url=None, filename=None, img_arr=None): if url is not None: print('getting pd results for ' + url) image = Utils.get_cv2_img_array(url) elif filename is not None: print('getting pd results for ' + filename) image = cv2.imread(filename) elif img_arr is not None: print('getting pd results for img_arr ') image = img_arr if image is None: print('image came back none') return None try: seg_res = pd_falcon_client.pd(image) except: print('exception in pd_falcon_client.pd ' + str(sys.exc_info()[0])) return # print('segres:'+str(seg_res)) if not 'mask' in seg_res: print('pd did not return mask') print seg_res return mask = seg_res['mask'] label_dict = seg_res['label_dict'] print('labels:' + str(label_dict)) # conversion_utils.count_values(mask) pose = seg_res['pose'] mask_np = np.array(mask, dtype=np.uint8) print('masksize ' + str(mask_np.shape)) pose_np = np.array(pose, dtype=np.uint8) print('posesize ' + str(pose_np.shape)) return [mask, label_dict, pose_np]
def download_image(prod, feature_name, category_id, max_images): downloaded_images = 0 directory = os.path.join(category_id, feature_name) try: downloaded_images = len([name for name in os.listdir(directory) if os.path.isfile(name)]) except: pass if downloaded_images < max_images: xlarge_url = prod['image']['sizes']['XLarge']['url'] img_arr = Utils.get_cv2_img_array(xlarge_url) if img_arr is None: logging.warning("Could not download image at url: {0}".format(xlarge_url)) return relevance = background_removal.image_is_relevant(img_arr) if relevance.is_relevant: logging.info("Image is relevant...") filename = "{0}_{1}.jpg".format(feature_name, prod["id"]) filepath = os.path.join(directory, filename) Utils.ensure_dir(directory) logging.info("Attempting to save to {0}...".format(filepath)) success = cv2.imwrite(filepath, img_arr) if not success: logging.info("!!!!!COULD NOT SAVE IMAGE!!!!!") return 0 # downloaded_images += 1 logging.info("Saved... Downloaded approx. {0} images in this category/feature combination" .format(downloaded_images)) return 1 else: # TODO: Count number of irrelevant images (for statistics) return 0
def test_gender(self): for url in self.urls: img_arr = Utils.get_cv2_img_array(url) if img_arr is None: continue print('image size:' + str(img_arr.shape)) face_dict = cropping.find_that_face(img_arr, 1) face = face_dict['faces'][0] print('face x,y,w,h: ' + str(face)) result = classifier_client.get('gender', url, url=url, face=face) print('result for gender on {} is {}'.format(url, result))
def get_pd_results_and_save(url=None, filename=None): if url is not None: print('getting pd results for ' + url) image = Utils.get_cv2_img_array(url) elif filename is not None: print('getting pd results for ' + filename) image = cv2.imread(filename) if image is None: print('image came back none') return None try: seg_res = pd_falcon_client.pd(image) except: print('exception in pd_falcon_client.pd ' + str(sys.exc_info()[0])) return # print('segres:'+str(seg_res)) if filename is not None: imgfilename = os.path.basename( filename ) #use the actual on-disk filename if thats what we started with, otherwise use the name generated by pd #this will et saved to /home/jeremy/pd_output/filename else: try: imgfilename = seg_res['filename'] + '.jpg' except: print('some error on imgfile name') imgfilename = str(int(time.time())) + '.jpg' print('filename ' + imgfilename) if not 'mask' in seg_res: print('pd did not return mask') print seg_res return mask = seg_res['mask'] label_dict = seg_res['label_dict'] print('labels:' + str(label_dict)) conversion_utils.count_values(mask) pose = seg_res['pose'] mask_np = np.array(mask, dtype=np.uint8) print('masksize ' + str(mask_np.shape)) pose_np = np.array(pose, dtype=np.uint8) print('posesize ' + str(pose_np.shape)) # print('returned url '+seg_res['url']) converted_mask = convert_and_save_results(mask_np, label_dict, pose_np, imgfilename, image, url) dir = constants.pd_output_savedir Utils.ensure_dir(dir) full_name = os.path.join(dir, imgfilename) # full_name = filename bmp_name = full_name.strip('.jpg') + ( '.bmp') #this bmp should get generated by convert_and_save_results # imutils.show_mask_with_labels(bmp_name,constants.fashionista_categories_augmented_zero_based,original_image = full_name,save_images=False) return mask, label_dict, pose_np, converted_mask
def get_single_label_output(url_or_np_array, required_image_size=(227, 227), output_layer_name='prob'): ''' CURRENTLY INOPERATIONAL :param url_or_np_array: :param required_image_size: :param output_layer_name: :return: ''' if isinstance(url_or_np_array, basestring): print('infer_one working on url:' + url_or_np_array) image = Utils.get_cv2_img_array(url_or_np_array) elif type(url_or_np_array) == np.ndarray: image = url_or_np_array # load image, switch to BGR, subtract mean, and make dims C x H x W for Caffe # im = Image.open(imagename) # im = im.resize(required_imagesize,Image.ANTIALIAS) # in_ = in_.astype(float) in_ = imutils.resize_keep_aspect(image, output_size=required_image_size, output_file=None) in_ = np.array(in_, dtype=np.float32) #.astype(float) if len(in_.shape) != 3: #h x w x channels, will be 2 if only h x w print('got 1-chan image, turning into 3 channel') #DEBUG THIS , ORDER MAY BE WRONG [what order? what was i thinking???] in_ = np.array([in_, in_, in_]) elif in_.shape[ 2] != 3: #for rgb/bgr, some imgages have 4 chan for alpha i guess print('got n-chan image, skipping - shape:' + str(in_.shape)) return # in_ = in_[:,:,::-1] for doing RGB -> BGR : since this is loaded nby cv2 its unecessary # cv2.imshow('test',in_) in_ -= np.array((104, 116, 122.0)) in_ = in_.transpose((2, 0, 1)) # shape for input (data blob is N x C x H x W), set data multilabel_net.blobs['data'].reshape(1, *in_.shape) multilabel_net.blobs['data'].data[...] = in_ # run net and take argmax for prediction multilabel_net.forward() # out = net.blobs['score'].data[0].argmax(axis=0) #for a parse with per-pixel max out = multilabel_net.blobs[output_layer_name].data[ 0] #for the nth class layer #siggy is after sigmoid min = np.min(out) max = np.max(out) print('out {}'.format(out))
def create_training_set_with_grabcut(collection): coll = db[collection] i = 1 total = db.training_images.count() start = time.time() for doc in coll.find(): if not i % 10: print "did {0}/{1} documents in {2} seconds".format( i, total, time.time() - start) print "average time for image = {0}".format( (time.time() - start) / i) url = doc['url'].split('/')[-1] img_url = 'https://tg-training.storage.googleapis.com/tamara_berg_street2shop_dataset/images/' + url image = Utils.get_cv2_img_array(img_url) if image is None: print "{0} is a bad image".format(img_url) continue i += 1 small_image, ratio = background_removal.standard_resize(image, 600) # skin_mask = kassper.skin_detection_with_grabcut(small_image, small_image, skin_or_clothes='skin') # mask = np.where(skin_mask == 255, 35, 0).astype(np.uint8) mask = np.zeros(small_image.shape[:2], dtype=np.uint8) for item in doc['items']: try: bb = [int(c / ratio) for c in item['bb']] item_bb = get_margined_bb(small_image, bb, 0) if item['category'] not in cats: continue category_num = cats.index(item['category']) item_mask = background_removal.simple_mask_grabcut( small_image, rect=item_bb) except: continue mask = np.where(item_mask == 255, category_num, mask) filename = 'tamara_berg_street2shop_dataset/masks/' + url[:-4] + '.txt' save_to_storage(bucket, mask, filename) coll.update_one({'_id': doc['_id']}, { '$set': { 'mask_url': 'https://tg-training.storage.googleapis.com/' + filename } }) print "Done masking! took {0} seconds".format(time.time() - start)
def make_masks(images): img_arrs = [] masks = [] mask_items = [] for url1 in images: max_retry = 5 got_mask = False img_arr = Utils.get_cv2_img_array(url1) while max_retry and not got_mask: try: mask, labels, pose = paperdoll_parse_enqueue.paperdoll_enqueue( img_arr, at_front=True, async=False).result[:3] got_mask = np.any(mask) # condition for legal mask? print(str(got_mask)) masks.append(mask) final_mask = paperdolls.after_pd_conclusions( mask, labels) #, person['face']) for num in np.unique(final_mask): category = list(labels.keys())[list( labels.values()).index(num)] if category == 'dress' and category in constants.paperdoll_shopstyle_women.keys( ): print("Found dress!!") mask_item = 255 * np.array(final_mask == num, dtype=np.uint8) mask_items.append(mask_item) except Exception as e: max_retry = max_retry - 1 print("Failed to get mask with exception:") print e.message if not got_mask: print url1 + " failed." continue else: print "Success: " + url1 # np.save("yuli_masks.npy", masks) # np.save(mfilename, mask_items) return
def save_img_at_url(url,savename=None): # download the image, convert it to a NumPy array, and then save # it into OpenCV format using last part of url (will overwrite imgs of same name at different url) if not savename: savename = url.split('?')[0] img_arr = Utils.get_cv2_img_array(url) print('name:'+savename) cv2.imwrite(savename,img_arr) return img_arr if url.count('jpg') > 1: print('np jpg here captain') return None resp = requests.get(url) print resp # resp = urllib.urlopen(url) image = np.asarray(bytearray(resp.read()), dtype="uint8") if image.size == 0: return None new_image = cv2.imdecode(image, cv2.IMREAD_COLOR)
def get_hydra_output(url_or_image_arr, out_dir='./', orig_size=(256, 256), crop_size=(224, 224), mean=(104.0, 116.7, 122.7), gpu=1, save_data=True, save_path='/data/jeremy/caffenets/hydra/production/saves', detection_thresholds=constants.hydra_tg_thresholds, url=None): ''' start net, get a bunch of results. DONE: resize to e.g. 250x250 (whatever was done in training) and crop to dims :param url_or_image_arr_list:# :param prototxt: :param caffemodel: :param out_dir: :param dims: :param output_layers: :param mean: :return: ''' detection_thresholds = None start_time = time.time() caffe.set_mode_gpu() caffe.set_device(gpu) # print('params:'+str(hydra_net.params)) out_layers = hydra_net.outputs out_layers = put_in_numeric_not_alphabetic_order(out_layers) # print('out layers: '+str(out_layers)) j = 0 output_names = constants.hydra_tg_heads # load image, resize, crop, subtract mean, and make dims C x H x W for Caffe im = Utils.get_cv2_img_array(url_or_image_arr) if im is None: logging.warning('could not get image ' + str(url_or_image_arr)) return None if isinstance(url_or_image_arr, basestring): print('get_hydra_output working on:' + url_or_image_arr) print('img size:' + str(im.shape)) im = imutils.resize_keep_aspect(im, output_size=orig_size) im = imutils.center_crop(im, crop_size) in_ = np.array(im, dtype=np.float32) if len(in_.shape) != 3: print('got 1-chan image, skipping') return elif in_.shape[2] != 3: print('got n-chan image, skipping - shape:' + str(in_.shape)) return in_ -= mean in_ = in_.transpose((2, 0, 1)) #W,H,C -> C,W,H hydra_net.blobs['data'].reshape(1, *in_.shape) hydra_net.blobs['data'].data[...] = in_ # run net and take argmax for prediction hydra_net.forward() out = {} i = 0 for output_layer in out_layers: one_out = hydra_net.blobs[output_layer].data[ 0] #not sure why the data is nested [1xN] matrix and not a flat [N] vector second_neuron = copy.copy( one_out[1] ) #the copy is required - if you dont do it then out gets over-written with each new one_out second_neuron = round(float(second_neuron), 3) # print('type:'+str(type(second_neuron))) name = output_names[i] if detection_thresholds is None: out[name] = second_neuron print('{} for category {} {}'.format(second_neuron, i, name)) elif second_neuron > detection_thresholds[i]: out[name] = second_neuron print('{} is past threshold {} for category {} {}'.format( second_neuron, detection_thresholds[i], i, name)) logging.debug('output for {} {} is {}'.format(output_layer, name, second_neuron)) # print('final till now:'+str(all_outs)+' '+str(all_outs2)) i = i + 1 logging.debug('all output:' + str(out)) logging.debug('elapsed time:' + str(time.time() - start_time)) if save_data: if isinstance(url_or_image_arr, basestring): filename = url_or_image_arr.replace('https://', '').replace( 'http://', '').replace('/', '_') url = url_or_image_arr else: n_chars = 6 filename = ''.join( random.choice(string.ascii_uppercase + string.digits) for _ in range(n_chars)) + '.jpg' if url is None: url = 'not_from_url' Utils.ensure_dir(save_path) imgname = os.path.join(save_path, filename) if imgname[:-4] != '.jpg': imgname = imgname + '.jpg' cv2.imwrite(imgname, im) # out['imgname']=filename out['url'] = url textfile = os.path.join(save_path, 'output.txt') with open(textfile, 'a') as fp: json.dump(out, fp, indent=4) fp.close() print('wrote image to {} and output text to {}'.format( imgname, textfile)) return out
return mask # if __name__ == "__main__": urls = ['https://s-media-cache-ak0.pinimg.com/236x/ce/64/a0/ce64a0dca7ad6d609c635432e9ae1413.jpg', #bags 'http://pinmakeuptips.com/wp-content/uploads/2015/02/1.4.jpg', 'https://s-media-cache-ak0.pinimg.com/564x/9a/9d/f7/9a9df7455232035c6284ad1961816fd8.jpg', 'http://2.bp.blogspot.com/-VmiQlqdliyE/U9nyto2L1II/AAAAAAAADZ8/g30i4j_YZeI/s1600/310714+awayfromblue+kameleon+shades+chambray+shift+dress+converse+louis+vuitton+neverfull+mbmj+scarf.png', 'https://s-media-cache-ak0.pinimg.com/236x/1b/31/fd/1b31fd2182f0243ebc97ca115f04f131.jpg', 'http://healthsupporters.com/wp-content/uploads/2013/10/belt_2689094b.jpg' , 'http://static1.businessinsider.com/image/53c96c90ecad04602086591e-480/man-fashion-jacket-fall-layers-belt.jpg', #belts 'http://gunbelts.com/media/wysiwyg/best-gun-belt-width.jpg', 'https://i.ytimg.com/vi/5-jWNWUQdFQ/maxresdefault.jpg' ] start_time=time.time() for url in urls: image = Utils.get_cv2_img_array(url) output = get_mlb_output(image) # output = get_mlb_output(url) # output1 = multilabel_from_binaries.get_multiple_single_label_outputs(url) # output2 = multilabel_from_binaries2.get_multiple_single_label_outputs(url) print('final output for {} : cat {} '.format(url,output)) # print('final output for {} : cat {} {}'.format(url,output1,output2)) elapsed_time = time.time()-start_time print('time per image:{}, {} elapsed for {} images'.format(elapsed_time/len(urls),elapsed_time,len(urls))) # cv2.imshow('output',output) raw_input('ret to cont') test_combine_neurodoll_and_multilabel(url) raw_input('ret to cont') test_combine_neurodoll_nonfalcon_and_multilabel_falcon(url)
import argparse import glob import time counter = 0 ext = [".jpg", ".png"] mother_path = '/home/jeremy/image_dbs/colorful_fashion_parsing_data' sets = {'images', 'labels', 'labels_200x150'} for set in sets: path = os.path.join(mother_path, set) for root, dirs, files in os.walk(path): for file in files: if file.endswith(tuple(ext)): image = Utils.get_cv2_img_array(os.path.join(root, file)) mirrored_image = cv2.flip(image, 1) words = file.split('.') cv2.imwrite( os.path.join(root, str(words[0]) + '-mirrored.' + str(words[1])), mirrored_image) counter += 1 print counter print os.path.join(root, words[0] + '-mirrored.' + words[1])
def check_db_speed(url, products_collection, category, annoy_list): image = Utils.get_cv2_img_array(url) if image is None: print "Couldn't download image.." return mask = np.random.rand(image.shape[0], image.shape[1]) mask = np.where(mask < 0.1, 255, 0).astype(np.uint8) start = time.time() fp = fingerprint_core.dict_fp(image, mask, category) # find_similar_mongo.find_top_n_results(image=image, mask=mask, number_of_results=100, category_id=category, # collection=products_collection, dibi=db) # entries = db[products_collection].find({'categories': category}, # {"id": 1, "fingerprint": 1, "images.XLarge": 1, "clickUrl": 1}) entries = db[products_collection].find( { "AnnoyIndex": { "$in": annoy_list }, 'categories': category }, { "id": 1, "fingerprint": 1, "images.XLarge": 1, "clickUrl": 1 }, ).hint([('AnnoyIndex', 1)]) farthest_nearest = 1 nearest_n = [] # tt = 0 i = 0 # for i, entry in enumerate(entries): for entry in entries: i += 1 # t1 = time() # tt += t1-t2 ent = entry['fingerprint'] d = NNSearch.distance(category, fp, ent, products_collection) if not d: # t2 = time() # tdif = t2 - t1 # tt += tdif continue if i < number_of_matches: nearest_n.append((entry, d)) farthest_nearest = 1 else: if i == number_of_matches: # sort by distance nearest_n.sort(key=lambda tup: tup[1]) # last item in the list (index -1, go python!) farthest_nearest = nearest_n[-1][1] # Loop through remaining entries, if one of them is better, insert it in the correct location and remove last item if d < farthest_nearest: insert_at = number_of_matches - 2 while d < nearest_n[insert_at][1]: insert_at -= 1 if insert_at == -1: break nearest_n.insert(insert_at + 1, (entry, d)) nearest_n.pop() farthest_nearest = nearest_n[-1][1] # t2 = time() # tdif = t2-t1 # tt+=tdif # print tt # print "sorting entries took {0} secs".format(time()-start) # t3 = time() [result[0].pop('fingerprint') for result in nearest_n] [result[0].pop('_id') for result in nearest_n] nearest_n = [result[0] for result in nearest_n] # t4 = time() # print t4-t3 # return nearest_n return time.time() - start
import os from PIL import Image import caffe import numpy as np from trendi import background_removal, Utils, constants import cv2 import sys import argparse import glob import time import skimage from PIL import Image path = "/home/yonatan/test_set/female/Juljia_Vysotskij_0001.jpg" image = Utils.get_cv2_img_array(path) def cv2_image_to_caffe(image): return skimage.img_as_float(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)).astype(np.float32) def find_face(image): gray = cv2.cvtColor(image, constants.BGR2GRAYCONST) face_cascades = [ cv2.CascadeClassifier(os.path.join(constants.classifiers_folder, 'haarcascade_frontalface_alt2.xml')), cv2.CascadeClassifier(os.path.join(constants.classifiers_folder, 'haarcascade_frontalface_alt.xml')), cv2.CascadeClassifier(os.path.join(constants.classifiers_folder, 'haarcascade_frontalface_alt_tree.xml')), cv2.CascadeClassifier(os.path.join(constants.classifiers_folder, 'haarcascade_frontalface_default.xml'))] cascade_ok = False for cascade in face_cascades:
def deepfashion_to_db( attribute_file='/data/jeremy/image_dbs/deep_fashion/category_and_attribute_prediction/list_attr_img.txt', bbox_file='/data/jeremy/image_dbs/deep_fashion/category_and_attribute_prediction/list_bbox.txt', bucket='https://tg-training.storage.googleapis.com/deep_fashion/category_and_attribute_prediction/', # bucket = 'gs://tg-training/deep_fashion/', use_visual_output=True): ''' takes deepfashion lists of bbs and attrs, and images in bucket. puts bb, attr, and link to file on bucket into db :param attribute_file: :param bbox_file: :param bucket: :param use_visual_output: :return: ''' with open(attribute_file, 'r') as fp: attrlines = fp.readlines() attrlines = attrlines[ 2:] #1st line is # of files, 2nd line describes fields fp.close() with open(bbox_file, 'r') as fp2: bboxlines = fp2.readlines() bboxlines = bboxlines[ 2:] #1st line is # of files, 2nd line describes fields fp2.close() bbox_files = [bboxline.split()[0] for bboxline in bboxlines] # hydra_cats_for_deepfashion_folders = create_nn_imagelsts.deepfashion_to_tg_hydra(folderpath='/data/jeremy/image_dbs/deep_fashion/category_and_attribute_prediction/img') with open('/data/jeremy/image_dbs/labels/deepfashion_to_hydra_map.txt', 'r') as fpx: hydra_cats_for_deepfashion_folders = json.load(fpx) fpx.close() hydra_cats_dirsonly = [ dummy[0] for dummy in hydra_cats_for_deepfashion_folders ] # print(hydra_cats_for_deepfashion_folders[0]) # print(hydra_cats_dirsonly[0]) # print(attrlines[0]) # print(bboxlines[0]) db = constants.db # cursor = db.training_images.find() for line in attrlines: bbox = None hydra_cat = None info_dict = {} info_dict['items'] = [] #raw_input('ret to cont') attribute_list = [] #print line path = line.split()[0] vals = [int(i) + 1 for i in line.split()[1:] ] #the vals are -1, 1 so add 1 to get 0, 2 non_zero_idx = np.nonzero(vals) print('nonzero idx:' + str(non_zero_idx)) for i in range(len(non_zero_idx[0])): #print yonatan_constants.attribute_type_dict[str(non_zero_idx[0][i])] attribute_list.append(yonatan_constants.attribute_type_dict[str( non_zero_idx[0][i])]) print('attributes:' + str(attribute_list)) url = bucket + path info_dict['items'].append({'attributes': attribute_list}) print('url:' + str(url)) try: bbox_index = bbox_files.index( path ) #there is prob a better way to search here than building another list bbox = [int(x) for x in bboxlines[bbox_index].split()[1:]] print('bbox ' + str(bbox) + ' line ' + str(bboxlines[bbox_index])) #deepfashion bbox is x1 x2 y1 y2, convert to x y w h bbox_tg = [bbox[0], bbox[1], bbox[2] - bbox[0], bbox[3] - bbox[1]] info_dict['items'][0]['bb'] = bbox_tg except ValueError: print(path + ' is not in bboxfile list') try: folder_only = path.replace( 'img/', '' ) #the paths from attr_file (and bbfile) have img/folder not just folder folder_only = os.path.dirname(folder_only) hydra_category_index = hydra_cats_dirsonly.index(folder_only) hydra_cat = hydra_cats_for_deepfashion_folders[ hydra_category_index][1] print( 'hydracat ' + str(hydra_cat) + ' line ' + str(hydra_cats_for_deepfashion_folders[hydra_category_index])) info_dict['items'][0]['category'] = hydra_cat except ValueError: print(folder_only + ' is not in hydracat list') img_arr = Utils.get_cv2_img_array(url) if img_arr is None: print('WARNING could not get ' + url) else: h, w = img_arr.shape[0:2] if use_visual_output: if bbox is not None: cv2.rectangle( img_arr, (bbox_tg[0], bbox_tg[1]), (bbox_tg[0] + bbox_tg[2], bbox_tg[1] + bbox_tg[3]), color=[255, 0, 0], thickness=5) cv2.imshow('deepfashion', img_arr) cv2.waitKey() info_dict['image_width'] = w info_dict['image_height'] = h info_dict['url'] = url # info_dict['items'] = items print('db entry:' + str(info_dict)) ack = db.training_images_deepfashion.insert_one(info_dict) print('ack:' + str(ack.acknowledged))
def get_single_label_output(url_or_np_array, net, required_image_size=(224, 224), resize=(250, 250), analog_output=True, from_binary_net=True): ''' gets the output of a single-label classifier. :param url_or_np_array: :param net: :param required_image_size: the size of the image the net wants (has been trained on), (WxH) :param resize: resize img to this dimension. if this is > required_image_size then take center crop. pls dont make this < required_image_size :param analog_output: get the actual class activations not just the max :param binary_net: get the 2nd neuron output if this is a binary net (forget abt the first one since the neurons would be 'not item/item' :return: ''' #the below could be replaced by a call to if isinstance(url_or_np_array, basestring): image = url_to_image(url_or_np_array) elif type(url_or_np_array) == np.ndarray: image = url_or_np_array image = Utils.get_cv2_img_array(url_or_np_array) if image is None: print('ug didnt manage to get an image...' + str(url_or_np_array)) return print('multilabel working on image of shape:' + str(image.shape)) # save image to make sure no rgb/bgr funny business # hash = hashlib.sha1() # hash.update(str(time.time())) # print hash.hexdigest() # name=hash.hexdigest()[:10]+'.jpg' # print('saving '+name) # cv2.imwrite(name,image) # load image, switch to BGR, subtract mean, and make dims C x H x W for Caffe # im = Image.open(imagename) # im = im.resize(required_imagesize,Image.ANTIALIAS) # in_ = in_.astype(float) if resize: image = imutils.resize_keep_aspect(image, output_size=resize, output_file=None) #print('original resized to '+str(image.shape)) height, width, channels = image.shape crop_dx = width - required_image_size[0] crop_dy = height - required_image_size[1] if crop_dx != 0: remove_x_left = crop_dx / 2 remove_x_right = crop_dx - remove_x_left image = image[:, remove_x_left:width - remove_x_right, :] #crop center x #print('removing {} from left and {} from right leaving {}'.format(remove_x_left,remove_x_right,image.shape)) if crop_dy != 0: remove_y_top = crop_dy / 2 remove_y_bottom = crop_dy - remove_y_top image = image[remove_y_top:width - remove_y_bottom, :, :] #crop center y #print('removing {} from top and {} from bottom leaving {}'.format(remove_x_left,remove_x_right,image.shape)) image = np.array(image, dtype=np.float32) #.astype(float) if len(image.shape) != 3: #h x w x channels, will be 2 if only h x w print('got 1-chan image, turning into 3 channel') #DEBUG THIS , ORDER MAY BE WRONG [what order? what was i thinking???] image = np.array([image, image, image]) elif image.shape[ 2] != 3: #for rgb/bgr, some imgages have 4 chan for alpha i guess print('got n-chan image, skipping - shape:' + str(image.shape)) return # image = image[:,:,::-1] for doing RGB -> BGR : since this is loaded nby cv2 its unecessary # cv2.imshow('test',image) image -= np.array((104.0, 116.0, 122.0)) image = image.transpose((2, 0, 1)) # shape for input (data blob is N x C x H x W), set data net.blobs['data'].reshape(1, *image.shape) net.blobs['data'].data[...] = image # run net and take argmax for prediction net.forward() # out = net.blobs['score'].data[0].argmax(axis=0) #for a parse with per-pixel max out = net.blobs['prob'].data[ 0] #for the nth class layer #siggy is after sigmoid the_chosen_one = out.argmax() min = np.min(out) max = np.max(out) print('net output: {} answer:class {}'.format(out, the_chosen_one)) if analog_output: if from_binary_net: second_neuron_output = out[1] print('binary output:' + str(out[1])) return second_neuron_output return out return the_chosen_one
def pd_test_iou_and_cats( images_file='/home/jeremy/image_dbs/pixlevel/pixlevel_fullsize_test_labels_v3.txt', n_channels=len(constants.pixlevel_categories_v3), output_labels=constants.pixlevel_categories_v3, pd_to_output_converter=constants. fashionista_augmented_zero_based_to_pixlevel_v3): ''' :param images_file: file w lines of imgfile,labelfile. fash.augmented.zerobased list at 'pixlevel_fullsize_test_labels_faz.txt' :param n_channels: number of categories :param output_labels: what labels for output (used in legends) :param pd_to_output_converter: convert pd to outputlabels using this mapping :return: results from histogram - iou etc ''' if not (os.path.exists(images_file)): logging.warning('file {} does not exist, exiting'.format(images_file)) return with open(images_file, 'r') as fp: lines = fp.readlines() if len(lines) == 0: logging.warning( 'got no lines from {}, exiting'.format(images_file)) return print('{} has lines like:\n{}'.format(images_file, lines[0])) imgfiles = [l.split()[0] for l in lines] labelfiles = [l.split()[1] for l in lines] hist = np.zeros((n_channels, n_channels)) for image_file, labelfile in zip(imgfiles, labelfiles): image_arr = Utils.get_cv2_img_array(image_file) gt_arr = cv2.imread(labelfile) print('gt size {} img size {} for {} and {}'.format( gt_arr.shape, image_arr.shape, labelfile, image_file)) result = get_pd_results(img_arr=image_arr) if result is not None: mask, labels, pose = result[:] else: logging.warning( 'got None result from get_pd_results in pd_test_iou_and_cats') continue # mask, labels, pose = paperdoll_parse_enqueue.paperdoll_enqueue(image_arr, async=False) conversion_utils.count_values(mask) converted_mask = convert_results( mask, labels, pd_to_nd_label_converter=pd_to_output_converter) conversion_utils.count_values(converted_mask) print('mask uniques {} converted uniques {} gt uniques {}'.format( np.unique(mask), np.unique(converted_mask), np.unique(gt_arr))) final_mask = pipeline.after_pd_conclusions(mask, labels) print('mask, after conclusions') conversion_utils.count_values(final_mask) converted_final_mask = convert_results( final_mask, labels, pd_to_nd_label_converter=pd_to_output_converter) conversion_utils.count_values(converted_final_mask) print('final mask uniques {} gt uniques {}'.format( np.unique(converted_final_mask), np.unique(gt_arr))) #before conclusions savename = os.path.basename(image_file).replace('.jpg', '_legend.jpg') imutils.show_mask_with_labels(converted_mask, labels=output_labels, original_image=image_file, visual_output=False, savename=savename, save_images=True) #after conclusions savename_finalmask = os.path.basename(image_file).replace( '.jpg', '_afterpdconclusions_legend.jpg') imutils.show_mask_with_labels(converted_final_mask, labels=output_labels, original_image=image_file, visual_output=False, savename=savename_finalmask, save_images=True) #ground truth gtsavename = os.path.basename(image_file).replace( '.jpg', '_gt_legend.jpg') imutils.show_mask_with_labels(gt_arr, labels=output_labels, original_image=image_file, visual_output=False, savename=gtsavename, save_images=True) #mask (after conclusions) bmpname = os.path.basename(image_file).replace('.jpg', 'pd.bmp') cv2.imwrite(bmpname, converted_final_mask) print('saving naive legend to ' + savename + ' afterconclusions legend to ' + savename_finalmask + ' gt legend to ' + gtsavename + ', mask to ' + bmpname) hist += jrinfer.fast_hist(gt_arr, converted_final_mask, n_channels) results = jrinfer.results_from_hist(hist, labels=labels) return results
def fashionista_to_ultimate_21(img_arr_or_url_or_file): ##########warning not finished #################3 #also this is for images saved using the fashionista_categories_augmented labels, raw d output is with a dictionary of arbitrary labels #so use get_pd_results_on_db_for_webtool.convert_and_save_results #actually this is a better place for that so now its copied here ultimate_21 = [ 'bgnd', 'bag', 'belt', 'blazer', 'coat', 'dress', 'eyewear', 'face', 'hair', 'hat', 'jeans', 'legging', 'pants', 'shoe', 'shorts', 'skin', 'skirt', 'stocking', 'suit', 'sweater', 'top' ] #tossed,'bodysuit', 'socks','bra' #tossed, 'accessories', 'ring', 'necklace', 'bracelet', 'wallet', 'tie', 'earrings', 'gloves', 'watch'] #scarf aded to shirt since it mostly shows up there # ## fashionista classes: fashionista_categories_augmented = [ '', 'null', 'tights', 'shorts', 'blazer', 't-shirt', 'bag', 'shoes', 'coat', 'skirt', 'purse', 'boots', 'blouse', 'jacket', 'bra', 'dress', 'pants', 'sweater', 'shirt', 'jeans', 'leggings', 'scarf', 'hat', 'top', 'cardigan', 'accessories', 'vest', 'sunglasses', 'belt', 'socks', 'glasses', 'intimate', 'stockings', 'necklace', 'cape', 'jumper', 'sweatshirt', 'suit', 'bracelet', 'heels', 'wedges', 'ring', 'flats', 'tie', 'romper', 'sandals', 'earrings', 'gloves', 'sneakers', 'clogs', 'watch', 'pumps', 'wallet', 'bodysuit', 'loafers', 'hair', 'skin', 'face' ] #0='',1='null'(bgnd) 57='face' #CONVERSION FROM FASH 57 TO ULTIMATE21 conversion_dictionary_strings = { 'bgnd': ['null'], 'bag': ['bag', 'purse'], 'belt': ['belt'], 'blazer': ['blazer', 'jacket', 'vest'], 'top': ['t-shirt', 'shirt', 'blouse', 'top', 'sweatshirt', 'scarf'], 'coat': ['coat', 'cape'], 'dress': ['dress', 'romper'], 'suit': ['suit'], 'face': ['face'], 'hair': ['hair'], 'hat': ['hat'], 'jeans': ['jeans'], 'legging': ['tights', 'leggings'], 'pants': ['pants'], 'shoe': [ 'shoes', 'boots', 'heels', 'wedges', 'pumps', 'loafers', 'flats', 'sandals', 'sneakers', 'clogs' ], 'shorts': ['shorts'], 'skin': ['skin'], 'skirt': ['skirt'], 'stocking': ['intimate', 'stockings'], 'eyewear': ['sunglasses', 'glasses'], 'sweater': ['sweater', 'cardigan', 'jumper'] } index_conversion = [ -666 for i in range(len(fashionista_categories_augmented)) ] for k, v in conversion_dictionary_strings.iteritems(): ultimate_21_index = ultimate_21.index(k) for fash_cat in v: #no need to check if the fashcat is in v since all the values here are in fashionista.... fash_index = fashionista_categories_augmented.index(fash_cat) # fash_index = constants.fashionista_categories_augmented_zero_based.index(fash_cat) logging.debug( 'ultimate index {} cat {} fash index {} cat {}'.format( ultimate_21_index, ultimate_21[ultimate_21_index], fash_index, fashionista_categories_augmented[fash_index])) index_conversion[fash_index] = ultimate_21_index print(index_conversion) # for i in range(len(index_conversion)): # if index_conversion[i] == -666: # print('unmapped fashcat:'+str(i)+fashionista_categories_augmented[i]) if isinstance(img_arr_or_url_or_file, basestring): mask = Utils.get_cv2_img_array(img_arr_or_url_or_file) #todo - check why get_cv2_img_array doesnt like getting a mask else: mask = img_arr_or_url_or_file # mask=cv2.imread(file,cv2.IMREAD_GRAYSCALE) if mask is None: if isinstance(img_arr_or_url_or_file, basestring): logging.warning('could not get filename/url:' + str(img_arr_or_url_or_file)) else: logging.warning('could not get file/url') return None if len(mask.shape) == 3: logging.warning('multichannel mask, taking chan 0') mask = mask[:, :, 0] uniques = np.unique(mask) # print('uniques:'+str(uniques)) for u in uniques: newval = index_conversion[u] #find indice(s) of vals matching unique if newval < 0: #if you want to 'throw away' a cat just map it to background, otherwise newval = 0 print('replacing index {} with newindex {}'.format(u, newval)) mask[mask == u] = newval return mask
def detect_with_scale_pyramid_and_sliding_window(image_filename_or_cv2_array, prototxt, caffemodel, mean_B=128, mean_G=128, mean_R=128, image_width=150, image_height=200, show_visual_output=False): caffe.set_mode_gpu() if host == 'jr-ThinkPad-X1-Carbon': caffe.set_mode_cpu() net = caffe.Net(prototxt, caffemodel, caffe.TEST) img_arr = Utils.get_cv2_img_array(image_filename_or_cv2_array) orig_img_arr = img_arr.copy() if (0): if mean_B is not None and mean_G is not None and mean_R is not None: img_arr[:, :, 0] = img_arr[:, :, 0] - mean_B img_arr[:, :, 1] = img_arr[:, :, 1] - mean_G img_arr[:, :, 2] = img_arr[:, :, 2] - mean_R img_arr = np.divide(img_arr, 255.0) transformed_image = img_arr.transpose((2, 0, 1)) net.blobs['data'].data[...] = transformed_image ### perform classification output = net.forward() logging.debug('orig shape ' + str(img_arr.shape)) h, w = img_arr.shape[0:2] # if h != image_height or w != image_width: # img_arr = cv2.resize(img_arr,(image_width,image_height)) # copy the image data into the memory allocated for the net i = 0 # loop over the image pyramid for resized in pyramid(img_arr, scale=1.5): # loop over the sliding window for each layer of the pyramid for (x, y, window) in sliding_window(resized, stepSize=32, windowSize=(image_width, image_height)): # if the window does not meet our desired window size, ignore it if window.shape[0] != image_height or window.shape[ 1] != image_width: logging.debug('got bad window shape from sliding_window') continue # THIS IS WHERE YOU WOULD PROCESS YOUR WINDOW, SUCH AS APPLYING A # MACHINE LEARNING CLASSIFIER TO CLASSIFY THE CONTENTS OF THE # WINDOW img_arr2 = window.copy() if mean_B is not None and mean_G is not None and mean_R is not None: img_arr2[:, :, 0] = img_arr2[:, :, 0] - mean_B img_arr2[:, :, 1] = img_arr2[:, :, 1] - mean_G img_arr2[:, :, 2] = img_arr2[:, :, 2] - mean_R img_arr2 = np.divide(img_arr2, 255.0) transformed_image = img_arr2.transpose((2, 0, 1)) net.blobs['data'].data[...] = transformed_image ### perform classification output = net.forward() n = net.blobs print('net ' + str(n)) output = n['output_layer'].data print('output ' + str(output)) # since we do not have a classifier, we'll just draw the window clone = resized.copy() cv2.rectangle(clone, (x, y), (x + image_width, y + image_height), (0, 255, 0), 2) if show_visual_output: cv2.imshow("sliding window", clone) cv2.imshow("window", window) cv2.waitKey(1) time.sleep(0.025) fname = 'output' + str(i) + '.jpg' # cv2.imwrite(fname,clone) i = i + 1