def test_generate_all_labels_replace(): # Generate labels for combinations of as-of-date and label timespan # use replace=True with testing.postgresql.Postgresql() as postgresql: engine = create_engine(postgresql.url()) create_binary_outcome_events(engine, "events", events_data) label_generator = LabelGenerator(db_engine=engine, query=LABEL_GENERATE_QUERY, replace=True) label_generator.generate_all_labels( labels_table=LABELS_TABLE_NAME, as_of_dates=["2014-09-30", "2015-03-30"], label_timespans=["6month", "3month"], ) result = engine.execute(""" select * from {} order by entity_id, as_of_date, label_timespan desc """.format(LABELS_TABLE_NAME)) records = [row for row in result] expected = [ # entity_id, as_of_date, label_timespan, name, type, label (1, date(2014, 9, 30), timedelta(180), "outcome", "binary", False), (1, date(2014, 9, 30), timedelta(90), "outcome", "binary", False), (2, date(2015, 3, 30), timedelta(180), "outcome", "binary", False), (2, date(2015, 3, 30), timedelta(90), "outcome", "binary", False), (3, date(2014, 9, 30), timedelta(180), "outcome", "binary", True), (3, date(2015, 3, 30), timedelta(180), "outcome", "binary", False), (4, date(2014, 9, 30), timedelta(180), "outcome", "binary", False), (4, date(2014, 9, 30), timedelta(90), "outcome", "binary", False), ] assert records == expected
def test_generate_all_labels(): with testing.postgresql.Postgresql() as postgresql: engine = create_engine(postgresql.url()) create_binary_outcome_events(engine, 'events', events_data) labels_table_name = 'labels' query = """select events.entity_id, bool_or(outcome::bool)::integer as outcome from events where '{as_of_date}' <= outcome_date and outcome_date < '{as_of_date}'::timestamp + interval '{label_timespan}' group by entity_id """ label_generator = LabelGenerator(db_engine=engine, query=query) label_generator.generate_all_labels( labels_table=labels_table_name, as_of_dates=['2014-09-30', '2015-03-30'], label_timespans=['6month', '3month'], ) result = engine.execute(''' select * from {} order by entity_id, as_of_date, label_timespan desc '''.format(labels_table_name) ) records = [row for row in result] expected = [ # entity_id, as_of_date, label_timespan, name, type, label (1, date(2014, 9, 30), timedelta(180), 'outcome', 'binary', False), (1, date(2014, 9, 30), timedelta(90), 'outcome', 'binary', False), (2, date(2015, 3, 30), timedelta(180), 'outcome', 'binary', False), (2, date(2015, 3, 30), timedelta(90), 'outcome', 'binary', False), (3, date(2014, 9, 30), timedelta(180), 'outcome', 'binary', True), (3, date(2015, 3, 30), timedelta(180), 'outcome', 'binary', False), (4, date(2014, 9, 30), timedelta(180), 'outcome', 'binary', False), (4, date(2014, 9, 30), timedelta(90), 'outcome', 'binary', False), ] assert records == expected
def test_generate_all_labels_errors_on_duplicates(): # label query that will yield duplicates (one row for each event in the timespan) BAD_LABEL_GENERATE_QUERY = """ select events.entity_id, 1 as outcome from events where '{as_of_date}' <= outcome_date and outcome_date < '{as_of_date}'::timestamp + interval '{label_timespan}' """ with testing.postgresql.Postgresql() as postgresql: engine = create_engine(postgresql.url()) create_binary_outcome_events(engine, "events", events_data) label_generator = LabelGenerator(db_engine=engine, query=BAD_LABEL_GENERATE_QUERY, replace=True) with pytest.raises(ValueError): label_generator.generate_all_labels( labels_table=LABELS_TABLE_NAME, as_of_dates=["2014-09-30", "2015-03-30"], label_timespans=["6month", "3month"], )
def test_label_generation(): # Generate labels for one as-of-date/label timespan combo with testing.postgresql.Postgresql() as postgresql: engine = create_engine(postgresql.url()) create_binary_outcome_events(engine, "events", events_data) label_generator = LabelGenerator(db_engine=engine, query=LABEL_GENERATE_QUERY) label_generator._create_labels_table(LABELS_TABLE_NAME) label_generator.generate( start_date="2014-09-30", label_timespan="6months", labels_table="labels" ) expected = [ # entity_id, as_of_date, label_timespan, name, type, label (1, date(2014, 9, 30), timedelta(180), "outcome", "binary", False), (3, date(2014, 9, 30), timedelta(180), "outcome", "binary", True), (4, date(2014, 9, 30), timedelta(180), "outcome", "binary", False), ] result = engine.execute( "select * from {} order by entity_id, as_of_date".format(LABELS_TABLE_NAME) ) records = [row for row in result] assert records == expected
def initialize_components(self): split_config = self.config["temporal_config"] self.chopper = Timechop(**split_config) cohort_config = self.config.get("cohort_config", {}) if "query" in cohort_config: self.cohort_table_name = "cohort_{}_{}".format( cohort_config.get('name', 'default'), self.cohort_hash) self.cohort_table_generator = EntityDateTableGenerator( entity_date_table_name=self.cohort_table_name, db_engine=self.db_engine, query=cohort_config["query"], replace=self.replace) else: logging.warning( "cohort_config missing or unrecognized. Without a cohort, " "you will not be able to make matrices, perform feature imputation, " "or save time by only computing features for that cohort.") self.features_ignore_cohort = True self.cohort_table_name = "cohort_{}".format(self.experiment_hash) self.cohort_table_generator = EntityDateTableGeneratorNoOp() self.subsets = [None] + self.config.get("scoring", {}).get( "subsets", []) if "label_config" in self.config: label_config = self.config["label_config"] self.labels_table_name = "labels_{}_{}".format( label_config.get('name', 'default'), filename_friendly_hash(label_config['query'])) self.label_generator = LabelGenerator( label_name=label_config.get("name", None), query=label_config["query"], replace=self.replace, db_engine=self.db_engine, ) else: self.labels_table_name = "labels_{}".format(self.experiment_hash) self.label_generator = LabelGeneratorNoOp() logging.warning( "label_config missing or unrecognized. Without labels, " "you will not be able to make matrices.") if "bias_audit_config" in self.config: bias_config = self.config["bias_audit_config"] self.bias_hash = filename_friendly_hash(bias_config) self.protected_groups_table_name = f"protected_groups_{self.bias_hash}" self.protected_groups_generator = ProtectedGroupsGenerator( db_engine=self.db_engine, from_obj=parse_from_obj(bias_config, 'bias_from_obj'), attribute_columns=bias_config.get("attribute_columns", None), entity_id_column=bias_config.get("entity_id_column", None), knowledge_date_column=bias_config.get("knowledge_date_column", None), protected_groups_table_name=self.protected_groups_table_name, replace=self.replace) else: self.protected_groups_generator = ProtectedGroupsGeneratorNoOp() logging.warning( "bias_audit_config missing or unrecognized. Without protected groups, " "you will not audit your models for bias and fairness.") self.feature_dictionary_creator = FeatureDictionaryCreator( features_schema_name=self.features_schema_name, db_engine=self.db_engine) self.feature_generator = FeatureGenerator( features_schema_name=self.features_schema_name, replace=self.replace, db_engine=self.db_engine, feature_start_time=split_config["feature_start_time"], materialize_subquery_fromobjs=self.materialize_subquery_fromobjs, features_ignore_cohort=self.features_ignore_cohort) self.feature_group_creator = FeatureGroupCreator( self.config.get("feature_group_definition", {"all": [True]})) self.feature_group_mixer = FeatureGroupMixer( self.config.get("feature_group_strategies", ["all"])) self.planner = Planner( feature_start_time=dt_from_str(split_config["feature_start_time"]), label_names=[ self.config.get("label_config", {}).get("name", DEFAULT_LABEL_NAME) ], label_types=["binary"], cohort_names=[ self.config.get("cohort_config", {}).get("name", None) ], user_metadata=self.config.get("user_metadata", {}), ) self.matrix_builder = MatrixBuilder( db_config={ "features_schema_name": self.features_schema_name, "labels_schema_name": "public", "labels_table_name": self.labels_table_name, "cohort_table_name": self.cohort_table_name, }, matrix_storage_engine=self.matrix_storage_engine, experiment_hash=self.experiment_hash, include_missing_labels_in_train_as=self.config.get( "label_config", {}).get("include_missing_labels_in_train_as", None), engine=self.db_engine, replace=self.replace, run_id=self.run_id, ) self.subsetter = Subsetter(db_engine=self.db_engine, replace=self.replace, as_of_times=self.all_as_of_times) self.trainer = ModelTrainer( experiment_hash=self.experiment_hash, model_storage_engine=self.model_storage_engine, model_grouper=ModelGrouper(self.config.get("model_group_keys", [])), db_engine=self.db_engine, replace=self.replace, run_id=self.run_id, ) self.predictor = Predictor( db_engine=self.db_engine, model_storage_engine=self.model_storage_engine, save_predictions=self.save_predictions, replace=self.replace, rank_order=self.config.get("prediction", {}).get("rank_tiebreaker", "worst"), ) self.individual_importance_calculator = IndividualImportanceCalculator( db_engine=self.db_engine, n_ranks=self.config.get("individual_importance", {}).get("n_ranks", 5), methods=self.config.get("individual_importance", {}).get("methods", ["uniform"]), replace=self.replace, ) self.evaluator = ModelEvaluator( db_engine=self.db_engine, testing_metric_groups=self.config.get("scoring", {}).get( "testing_metric_groups", []), training_metric_groups=self.config.get("scoring", {}).get( "training_metric_groups", []), bias_config=self.config.get("bias_audit_config", {})) self.model_train_tester = ModelTrainTester( matrix_storage_engine=self.matrix_storage_engine, model_evaluator=self.evaluator, model_trainer=self.trainer, individual_importance_calculator=self. individual_importance_calculator, predictor=self.predictor, subsets=self.subsets, protected_groups_generator=self.protected_groups_generator, cohort_hash=self.cohort_hash)
def basic_integration_test(state_filters, feature_group_create_rules, feature_group_mix_rules, expected_matrix_multiplier, expected_group_lists): with testing.postgresql.Postgresql() as postgresql: db_engine = create_engine(postgresql.url()) Base.metadata.create_all(db_engine) populate_source_data(db_engine) with TemporaryDirectory() as temp_dir: chopper = Timechop( feature_start_time=datetime(2010, 1, 1), feature_end_time=datetime(2014, 1, 1), label_start_time=datetime(2011, 1, 1), label_end_time=datetime(2014, 1, 1), model_update_frequency='1year', training_label_timespans=['6months'], test_label_timespans=['6months'], training_as_of_date_frequencies='1day', test_as_of_date_frequencies='3months', max_training_histories=['1months'], test_durations=['1months'], ) state_table_generator = StateTableGeneratorFromDense( db_engine=db_engine, experiment_hash='abcd', dense_state_table='states', ) label_generator = LabelGenerator( db_engine=db_engine, query=sample_config()['label_config']['query']) feature_generator = FeatureGenerator( db_engine=db_engine, features_schema_name='features', replace=True, ) feature_dictionary_creator = FeatureDictionaryCreator( db_engine=db_engine, features_schema_name='features') feature_group_creator = FeatureGroupCreator( feature_group_create_rules) feature_group_mixer = FeatureGroupMixer(feature_group_mix_rules) planner = Planner( feature_start_time=datetime(2010, 1, 1), label_names=['outcome'], label_types=['binary'], matrix_directory=os.path.join(temp_dir, 'matrices'), states=state_filters, user_metadata={}, ) builder = HighMemoryCSVBuilder(engine=db_engine, db_config={ 'features_schema_name': 'features', 'labels_schema_name': 'public', 'labels_table_name': 'labels', 'sparse_state_table_name': 'tmp_sparse_states_abcd', }, matrix_directory=os.path.join( temp_dir, 'matrices'), replace=True) # chop time split_definitions = chopper.chop_time() num_split_matrices = sum(1 + len(split['test_matrices']) for split in split_definitions) # generate as_of_times for feature/label/state generation all_as_of_times = [] for split in split_definitions: all_as_of_times.extend(split['train_matrix']['as_of_times']) for test_matrix in split['test_matrices']: all_as_of_times.extend(test_matrix['as_of_times']) all_as_of_times = list(set(all_as_of_times)) # generate sparse state table state_table_generator.generate_sparse_table( as_of_dates=all_as_of_times) # create labels table label_generator.generate_all_labels(labels_table='labels', as_of_dates=all_as_of_times, label_timespans=['6months']) # create feature table tasks # we would use FeatureGenerator#create_all_tables but want to use # the tasks dict directly to create a feature dict aggregations = feature_generator.aggregations( feature_aggregation_config=[{ 'prefix': 'cat', 'from_obj': 'cat_complaints', 'knowledge_date_column': 'as_of_date', 'aggregates': [{ 'quantity': 'cat_sightings', 'metrics': ['count', 'avg'], 'imputation': { 'all': { 'type': 'mean' } } }], 'intervals': ['1y'], 'groups': ['entity_id'] }, { 'prefix': 'dog', 'from_obj': 'dog_complaints', 'knowledge_date_column': 'as_of_date', 'aggregates_imputation': { 'count': { 'type': 'constant', 'value': 7 }, 'sum': { 'type': 'mean' }, 'avg': { 'type': 'zero' } }, 'aggregates': [{ 'quantity': 'dog_sightings', 'metrics': ['count', 'avg'], }], 'intervals': ['1y'], 'groups': ['entity_id'] }], feature_dates=all_as_of_times, state_table=state_table_generator.sparse_table_name) feature_table_agg_tasks = feature_generator.generate_all_table_tasks( aggregations, task_type='aggregation') # create feature aggregation tables feature_generator.process_table_tasks(feature_table_agg_tasks) feature_table_imp_tasks = feature_generator.generate_all_table_tasks( aggregations, task_type='imputation') # create feature imputation tables feature_generator.process_table_tasks(feature_table_imp_tasks) # build feature dictionaries from feature tables and # subsetting config master_feature_dict = feature_dictionary_creator.feature_dictionary( feature_table_names=feature_table_imp_tasks.keys(), index_column_lookup=feature_generator.index_column_lookup( aggregations)) feature_dicts = feature_group_mixer.generate( feature_group_creator.subsets(master_feature_dict)) # figure out what matrices need to be built _, matrix_build_tasks =\ planner.generate_plans( split_definitions, feature_dicts ) # go and build the matrices builder.build_all_matrices(matrix_build_tasks) # super basic assertion: did matrices we expect get created? matrices_records = list( db_engine.execute( '''select matrix_uuid, n_examples, matrix_type from model_metadata.matrices ''')) matrix_directory = os.path.join(temp_dir, 'matrices') matrices = [ path for path in os.listdir(matrix_directory) if '.csv' in path ] metadatas = [ path for path in os.listdir(matrix_directory) if '.yaml' in path ] assert len(matrices) == num_split_matrices * \ expected_matrix_multiplier assert len(metadatas) == num_split_matrices * \ expected_matrix_multiplier assert len(matrices) == len(matrices_records) feature_group_name_lists = [] for metadata_path in metadatas: with open(os.path.join(matrix_directory, metadata_path)) as f: metadata = yaml.load(f) feature_group_name_lists.append(metadata['feature_groups']) for matrix_uuid, n_examples, matrix_type in matrices_records: assert matrix_uuid in matrix_build_tasks #the hashes of the matrices assert type(n_examples) is int assert matrix_type == matrix_build_tasks[matrix_uuid][ 'matrix_type'] def deep_unique_tuple(l): return set([tuple(i) for i in l]) assert deep_unique_tuple( feature_group_name_lists) == deep_unique_tuple( expected_group_lists)
def basic_integration_test( cohort_names, feature_group_create_rules, feature_group_mix_rules, expected_matrix_multiplier, expected_group_lists, ): with testing.postgresql.Postgresql() as postgresql: db_engine = create_engine(postgresql.url()) Base.metadata.create_all(db_engine) populate_source_data(db_engine) with TemporaryDirectory() as temp_dir: chopper = Timechop( feature_start_time=datetime(2010, 1, 1), feature_end_time=datetime(2014, 1, 1), label_start_time=datetime(2011, 1, 1), label_end_time=datetime(2014, 1, 1), model_update_frequency="1year", training_label_timespans=["6months"], test_label_timespans=["6months"], training_as_of_date_frequencies="1day", test_as_of_date_frequencies="3months", max_training_histories=["1months"], test_durations=["1months"], ) entity_date_table_generator = EntityDateTableGenerator( db_engine=db_engine, entity_date_table_name="cohort_abcd", query="select distinct(entity_id) from events") label_generator = LabelGenerator( db_engine=db_engine, query=sample_config()["label_config"]["query"]) feature_generator = FeatureGenerator( db_engine=db_engine, features_schema_name="features", replace=True) feature_dictionary_creator = FeatureDictionaryCreator( db_engine=db_engine, features_schema_name="features") feature_group_creator = FeatureGroupCreator( feature_group_create_rules) feature_group_mixer = FeatureGroupMixer(feature_group_mix_rules) project_storage = ProjectStorage(temp_dir) planner = Planner( feature_start_time=datetime(2010, 1, 1), label_names=["outcome"], label_types=["binary"], cohort_names=cohort_names, user_metadata={}, ) builder = MatrixBuilder( engine=db_engine, db_config={ "features_schema_name": "features", "labels_schema_name": "public", "labels_table_name": "labels", "cohort_table_name": "cohort_abcd", }, experiment_hash=None, matrix_storage_engine=project_storage.matrix_storage_engine(), replace=True, ) # chop time split_definitions = chopper.chop_time() num_split_matrices = sum(1 + len(split["test_matrices"]) for split in split_definitions) # generate as_of_times for feature/label/state generation all_as_of_times = [] for split in split_definitions: all_as_of_times.extend(split["train_matrix"]["as_of_times"]) for test_matrix in split["test_matrices"]: all_as_of_times.extend(test_matrix["as_of_times"]) all_as_of_times = list(set(all_as_of_times)) # generate entity_date state table entity_date_table_generator.generate_entity_date_table( as_of_dates=all_as_of_times) # create labels table label_generator.generate_all_labels( labels_table="labels", as_of_dates=all_as_of_times, label_timespans=["6months"], ) # create feature table tasks # we would use FeatureGenerator#create_all_tables but want to use # the tasks dict directly to create a feature dict aggregations = feature_generator.aggregations( feature_aggregation_config=[ { "prefix": "cat", "from_obj": "cat_complaints", "knowledge_date_column": "as_of_date", "aggregates": [{ "quantity": "cat_sightings", "metrics": ["count", "avg"], "imputation": { "all": { "type": "mean" } }, }], "intervals": ["1y"], "groups": ["entity_id"], }, { "prefix": "dog", "from_obj": "dog_complaints", "knowledge_date_column": "as_of_date", "aggregates_imputation": { "count": { "type": "constant", "value": 7 }, "sum": { "type": "mean" }, "avg": { "type": "zero" }, }, "aggregates": [{ "quantity": "dog_sightings", "metrics": ["count", "avg"] }], "intervals": ["1y"], "groups": ["entity_id"], }, ], feature_dates=all_as_of_times, state_table=entity_date_table_generator.entity_date_table_name, ) feature_table_agg_tasks = feature_generator.generate_all_table_tasks( aggregations, task_type="aggregation") # create feature aggregation tables feature_generator.process_table_tasks(feature_table_agg_tasks) feature_table_imp_tasks = feature_generator.generate_all_table_tasks( aggregations, task_type="imputation") # create feature imputation tables feature_generator.process_table_tasks(feature_table_imp_tasks) # build feature dictionaries from feature tables and # subsetting config master_feature_dict = feature_dictionary_creator.feature_dictionary( feature_table_names=feature_table_imp_tasks.keys(), index_column_lookup=feature_generator.index_column_lookup( aggregations), ) feature_dicts = feature_group_mixer.generate( feature_group_creator.subsets(master_feature_dict)) # figure out what matrices need to be built _, matrix_build_tasks = planner.generate_plans( split_definitions, feature_dicts) # go and build the matrices builder.build_all_matrices(matrix_build_tasks) # super basic assertion: did matrices we expect get created? matrices_records = list( db_engine.execute( """select matrix_uuid, num_observations, matrix_type from triage_metadata.matrices """)) matrix_directory = os.path.join(temp_dir, "matrices") matrices = [ path for path in os.listdir(matrix_directory) if ".csv" in path ] metadatas = [ path for path in os.listdir(matrix_directory) if ".yaml" in path ] assert len(matrices) == num_split_matrices * \ expected_matrix_multiplier assert len(metadatas) == num_split_matrices * \ expected_matrix_multiplier assert len(matrices) == len(matrices_records) feature_group_name_lists = [] for metadata_path in metadatas: with open(os.path.join(matrix_directory, metadata_path)) as f: metadata = yaml.full_load(f) feature_group_name_lists.append(metadata["feature_groups"]) for matrix_uuid, num_observations, matrix_type in matrices_records: assert matrix_uuid in matrix_build_tasks # the hashes of the matrices assert type(num_observations) is int assert matrix_type == matrix_build_tasks[matrix_uuid][ "matrix_type"] def deep_unique_tuple(l): return set([tuple(i) for i in l]) assert deep_unique_tuple( feature_group_name_lists) == deep_unique_tuple( expected_group_lists)
def initialize_components(self): split_config = self.config['temporal_config'] self.chopper = Timechop(**split_config) cohort_config = self.config.get('cohort_config', {}) if 'query' in cohort_config: self.state_table_generator = StateTableGeneratorFromQuery( experiment_hash=self.experiment_hash, db_engine=self.db_engine, query=cohort_config['query'] ) elif 'entities_table' in cohort_config: self.state_table_generator = StateTableGeneratorFromEntities( experiment_hash=self.experiment_hash, db_engine=self.db_engine, entities_table=cohort_config['entities_table'] ) elif 'dense_states' in cohort_config: self.state_table_generator = StateTableGeneratorFromDense( experiment_hash=self.experiment_hash, db_engine=self.db_engine, dense_state_table=cohort_config['dense_states']['table_name'] ) else: logging.warning('cohort_config missing or unrecognized. Without a cohort, you will not be able to make matrices or perform feature imputation.') self.state_table_generator = StateTableGeneratorNoOp() if 'label_config' in self.config: self.label_generator = LabelGenerator( label_name=self.config['label_config'].get('name', None), query=self.config['label_config']['query'], db_engine=self.db_engine, ) else: self.label_generator = LabelGeneratorNoOp() logging.warning('label_config missing or unrecognized. Without labels, you will not be able to make matrices.') self.feature_dictionary_creator = FeatureDictionaryCreator( features_schema_name=self.features_schema_name, db_engine=self.db_engine, ) self.feature_generator = FeatureGenerator( features_schema_name=self.features_schema_name, replace=self.replace, db_engine=self.db_engine, feature_start_time=split_config['feature_start_time'] ) self.feature_group_creator = FeatureGroupCreator( self.config.get('feature_group_definition', {'all': [True]}) ) self.feature_group_mixer = FeatureGroupMixer( self.config.get('feature_group_strategies', ['all']) ) self.planner = Planner( feature_start_time=dt_from_str(split_config['feature_start_time']), label_names=[self.config.get('label_config', {}).get('name', DEFAULT_LABEL_NAME)], label_types=['binary'], cohort_name=self.config.get('cohort_config', {}).get('name', None), states=self.config.get('cohort_config', {}).get('dense_states', {}) .get('state_filters', []), user_metadata=self.config.get('user_metadata', {}), ) self.matrix_builder = MatrixBuilder( db_config={ 'features_schema_name': self.features_schema_name, 'labels_schema_name': 'public', 'labels_table_name': self.labels_table_name, # TODO: have planner/builder take state table later on, so we # can grab it from the StateTableGenerator instead of # duplicating it here 'sparse_state_table_name': self.sparse_states_table_name, }, matrix_storage_engine=self.matrix_storage_engine, include_missing_labels_in_train_as=self.config.get('label_config', {}) .get('include_missing_labels_in_train_as', None), engine=self.db_engine, replace=self.replace ) self.trainer = ModelTrainer( experiment_hash=self.experiment_hash, model_storage_engine=self.model_storage_engine, model_grouper=ModelGrouper(self.config.get('model_group_keys', [])), db_engine=self.db_engine, replace=self.replace ) self.tester = ModelTester( model_storage_engine=self.model_storage_engine, matrix_storage_engine=self.matrix_storage_engine, replace=self.replace, db_engine=self.db_engine, individual_importance_config=self.config.get('individual_importance', {}), evaluator_config=self.config.get('scoring', {}) )
def initialize_components(self): split_config = self.config["temporal_config"] self.chopper = Timechop(**split_config) cohort_config = self.config.get("cohort_config", {}) if "query" in cohort_config: self.cohort_table_generator = CohortTableGenerator( cohort_table_name=self.cohort_table_name, db_engine=self.db_engine, query=cohort_config["query"], replace=self.replace ) else: logging.warning( "cohort_config missing or unrecognized. Without a cohort, " "you will not be able to make matrices or perform feature imputation." ) self.cohort_table_generator = CohortTableGeneratorNoOp() if "label_config" in self.config: self.label_generator = LabelGenerator( label_name=self.config["label_config"].get("name", None), query=self.config["label_config"]["query"], replace=self.replace, db_engine=self.db_engine, ) else: self.label_generator = LabelGeneratorNoOp() logging.warning( "label_config missing or unrecognized. Without labels, " "you will not be able to make matrices." ) self.feature_dictionary_creator = FeatureDictionaryCreator( features_schema_name=self.features_schema_name, db_engine=self.db_engine ) self.feature_generator = FeatureGenerator( features_schema_name=self.features_schema_name, replace=self.replace, db_engine=self.db_engine, feature_start_time=split_config["feature_start_time"], materialize_subquery_fromobjs=self.materialize_subquery_fromobjs ) self.feature_group_creator = FeatureGroupCreator( self.config.get("feature_group_definition", {"all": [True]}) ) self.feature_group_mixer = FeatureGroupMixer( self.config.get("feature_group_strategies", ["all"]) ) self.planner = Planner( feature_start_time=dt_from_str(split_config["feature_start_time"]), label_names=[ self.config.get("label_config", {}).get("name", DEFAULT_LABEL_NAME) ], label_types=["binary"], cohort_names=[self.config.get("cohort_config", {}).get("name", None)], user_metadata=self.config.get("user_metadata", {}), ) self.matrix_builder = MatrixBuilder( db_config={ "features_schema_name": self.features_schema_name, "labels_schema_name": "public", "labels_table_name": self.labels_table_name, "cohort_table_name": self.cohort_table_name, }, matrix_storage_engine=self.matrix_storage_engine, experiment_hash=self.experiment_hash, include_missing_labels_in_train_as=self.config.get("label_config", {}).get( "include_missing_labels_in_train_as", None ), engine=self.db_engine, replace=self.replace, ) self.trainer = ModelTrainer( experiment_hash=self.experiment_hash, model_storage_engine=self.model_storage_engine, model_grouper=ModelGrouper(self.config.get("model_group_keys", [])), db_engine=self.db_engine, replace=self.replace, ) self.tester = ModelTester( model_storage_engine=self.model_storage_engine, matrix_storage_engine=self.matrix_storage_engine, replace=self.replace, db_engine=self.db_engine, individual_importance_config=self.config.get("individual_importance", {}), evaluator_config=self.config.get("scoring", {}), )
class ExperimentBase(ABC): """The base class for all Experiments. Subclasses must implement the following four methods: process_query_tasks process_matrix_build_tasks process_train_tasks process_model_test_tasks Look at singlethreaded.py for reference implementation of each. Args: config (dict) db_engine (triage.util.db.SerializableDbEngine or sqlalchemy.engine.Engine) model_storage_class (triage.component.catwalk.storage.ModelStorageEngine) project_path (string) replace (bool) cleanup_timeout (int) """ cleanup_timeout = 60 # seconds def __init__( self, config, db_engine, model_storage_class=None, project_path=None, replace=True, cleanup_timeout=None, ): self._check_config_version(config) self.config = config if isinstance(db_engine, Engine): logging.warning( 'Raw, unserializable SQLAlchemy engine passed. URL will be used, other options may be lost in multi-process environments' ) self.db_engine = create_engine(db_engine.url) else: self.db_engine = db_engine if model_storage_class: self.model_storage_engine = model_storage_class( project_path=project_path) self.matrix_store_class = CSVMatrixStore # can't be configurable until Architect obeys self.project_path = project_path self.replace = replace ensure_db(self.db_engine) self.features_schema_name = 'features' if project_path: self.matrices_directory = os.path.join(self.project_path, 'matrices') if not os.path.exists(self.matrices_directory): os.makedirs(self.matrices_directory) self.experiment_hash = save_experiment_and_get_hash( self.config, self.db_engine) self.labels_table_name = 'labels_{}'.format(self.experiment_hash) self.initialize_components() self.cleanup_timeout = (self.cleanup_timeout if cleanup_timeout is None else cleanup_timeout) def _check_config_version(self, config): if 'config_version' in config: config_version = config['config_version'] else: logging.warning( 'config_version key not found in experiment config. ' 'Assuming v1, which may not be correct') config_version = 'v1' if config_version != CONFIG_VERSION: raise ValueError("Experiment config '{}' " "does not match current version '{}'. " "Will not run experiment.".format( config_version, CONFIG_VERSION)) def initialize_components(self): split_config = self.config['temporal_config'] self.chopper = Timechop( feature_start_time=dt_from_str(split_config['feature_start_time']), feature_end_time=dt_from_str(split_config['feature_end_time']), label_start_time=dt_from_str(split_config['label_start_time']), label_end_time=dt_from_str(split_config['label_end_time']), model_update_frequency=split_config['model_update_frequency'], training_label_timespans=split_config['training_label_timespans'], test_label_timespans=split_config['test_label_timespans'], training_as_of_date_frequencies=split_config[ 'training_as_of_date_frequencies'], test_as_of_date_frequencies=split_config[ 'test_as_of_date_frequencies'], max_training_histories=split_config['max_training_histories'], test_durations=split_config['test_durations'], ) cohort_config = self.config.get('cohort_config', {}) if 'query' in cohort_config: self.state_table_generator = StateTableGeneratorFromQuery( experiment_hash=self.experiment_hash, db_engine=self.db_engine, query=cohort_config['query']) elif 'entities_table' in cohort_config: self.state_table_generator = StateTableGeneratorFromEntities( experiment_hash=self.experiment_hash, db_engine=self.db_engine, entities_table=cohort_config['entities_table']) elif 'dense_states' in cohort_config: self.state_table_generator = StateTableGeneratorFromDense( experiment_hash=self.experiment_hash, db_engine=self.db_engine, dense_state_table=cohort_config['dense_states']['table_name']) else: raise ValueError('Cohort config missing or unrecognized') self.label_generator = LabelGenerator( label_name=self.config['label_config'].get('name', None), query=self.config['label_config']['query'], db_engine=self.db_engine, ) self.feature_dictionary_creator = FeatureDictionaryCreator( features_schema_name=self.features_schema_name, db_engine=self.db_engine, ) self.feature_generator = FeatureGenerator( features_schema_name=self.features_schema_name, replace=self.replace, db_engine=self.db_engine, feature_start_time=split_config['feature_start_time']) self.feature_group_creator = FeatureGroupCreator( self.config.get('feature_group_definition', {'all': [True]})) self.feature_group_mixer = FeatureGroupMixer( self.config.get('feature_group_strategies', ['all'])) self.planner = Planner( feature_start_time=dt_from_str(split_config['feature_start_time']), label_names=[ self.config.get('label_config', {}).get('name', DEFAULT_LABEL_NAME) ], label_types=['binary'], matrix_directory=self.matrices_directory, cohort_name=self.config.get('cohort_config', {}).get('name', None), states=self.config.get('cohort_config', {}).get('dense_states', {}).get('state_filters', []), user_metadata=self.config.get('user_metadata', {}), ) self.matrix_builder = HighMemoryCSVBuilder( db_config={ 'features_schema_name': self.features_schema_name, 'labels_schema_name': 'public', 'labels_table_name': self.labels_table_name, # TODO: have planner/builder take state table later on, so we # can grab it from the StateTableGenerator instead of # duplicating it here 'sparse_state_table_name': 'tmp_sparse_states_{}'.format(self.experiment_hash), }, matrix_directory=self.matrices_directory, include_missing_labels_in_train_as=self.config['label_config'].get( 'include_missing_labels_in_train_as', None), engine=self.db_engine, replace=self.replace) self.trainer = ModelTrainer( project_path=self.project_path, experiment_hash=self.experiment_hash, model_storage_engine=self.model_storage_engine, model_grouper=ModelGrouper(self.config.get('model_group_keys', [])), db_engine=self.db_engine, replace=self.replace) self.tester = ModelTester( model_storage_engine=self.model_storage_engine, project_path=self.project_path, replace=self.replace, db_engine=self.db_engine, individual_importance_config=self.config.get( 'individual_importance', {}), evaluator_config=self.config.get('scoring', {})) @cachedproperty def split_definitions(self): """Temporal splits based on the experiment's configuration Returns: (dict) temporal splits Example: ``` { 'feature_start_time': {datetime}, 'feature_end_time': {datetime}, 'label_start_time': {datetime}, 'label_end_time': {datetime}, 'train_matrix': { 'first_as_of_time': {datetime}, 'last_as_of_time': {datetime}, 'matrix_info_end_time': {datetime}, 'training_label_timespan': {str}, 'training_as_of_date_frequency': {str}, 'max_training_history': {str}, 'as_of_times': [list of {datetime}s] }, 'test_matrices': [list of matrix defs similar to train_matrix] } ``` (When updating/setting split definitions, matrices should have UUIDs.) """ split_definitions = self.chopper.chop_time() logging.info('Computed and stored split definitions: %s', split_definitions) return split_definitions def print_time_split_summary(self): print('\n----TIME SPLIT SUMMARY----\n') print('Number of time splits: {}'.format(len(self.split_definitions))) for split_index, split in enumerate(self.split_definitions): train_times = split['train_matrix']['as_of_times'] test_times = [ as_of_time for test_matrix in split['test_matrices'] for as_of_time in test_matrix['as_of_times'] ] print('''Split index {}: Training as_of_time_range: {} to {} ({} total) Testing as_of_time range: {} to {} ({} total)\n\n'''.format( split_index, min(train_times), max(train_times), len(train_times), min(test_times), max(test_times), len(test_times))) print('For more detailed information on your time splits, ' 'inspect the experiment `split_definitions` property') @cachedproperty def all_as_of_times(self): """All 'as of times' in experiment config Used for label and feature generation. Returns: (list) of datetimes """ all_as_of_times = [] for split in self.split_definitions: all_as_of_times.extend(split['train_matrix']['as_of_times']) logging.info('Adding as_of_times from train matrix: %s', split['train_matrix']['as_of_times']) for test_matrix in split['test_matrices']: logging.info('Adding as_of_times from test matrix: %s', test_matrix['as_of_times']) all_as_of_times.extend(test_matrix['as_of_times']) logging.info( 'Computed %s total as_of_times for label and feature generation', len(all_as_of_times)) distinct_as_of_times = list(set(all_as_of_times)) logging.info( 'Computed %s distinct as_of_times for label and feature generation', len(distinct_as_of_times)) return distinct_as_of_times @cachedproperty def collate_aggregations(self): """Collation of ``Aggregation`` objects used by this experiment. Returns: (list) of ``collate.Aggregation`` objects """ logging.info('Creating collate aggregations') return self.feature_generator.aggregations( feature_aggregation_config=self.config['feature_aggregations'], feature_dates=self.all_as_of_times, state_table=self.state_table_generator.sparse_table_name, ) @cachedproperty def feature_aggregation_table_tasks(self): """All feature table query tasks specified by this ``Experiment``. Returns: (dict) keys are group table names, values are themselves dicts, each with keys for different stages of table creation (prepare, inserts, finalize) and with values being lists of SQL commands """ logging.info('Calculating feature tasks for %s as_of_times', len(self.all_as_of_times)) return self.feature_generator.generate_all_table_tasks( self.collate_aggregations, task_type='aggregation') @cachedproperty def feature_imputation_table_tasks(self): """All feature imputation query tasks specified by this ``Experiment``. Returns: (dict) keys are group table names, values are themselves dicts, each with keys for different stages of table creation (prepare, inserts, finalize) and with values being lists of SQL commands """ logging.info('Calculating feature tasks for %s as_of_times', len(self.all_as_of_times)) return self.feature_generator.generate_all_table_tasks( self.collate_aggregations, task_type='imputation') @cachedproperty def master_feature_dictionary(self): """All possible features found in the database. Not all features will necessarily end up in matrices Returns: (list) of dicts, keys being feature table names and values being lists of feature names """ result = self.feature_dictionary_creator.feature_dictionary( feature_table_names=self.feature_imputation_table_tasks.keys(), index_column_lookup=self.feature_generator.index_column_lookup( self.collate_aggregations)) logging.info('Computed master feature dictionary: %s', result) return result @property def feature_dicts(self): """Feature dictionaries, representing the feature tables and columns configured in this experiment after computing feature groups. Returns: (list) of dicts, keys being feature table names and values being lists of feature names """ return self.feature_group_mixer.generate( self.feature_group_creator.subsets(self.master_feature_dictionary)) @cachedproperty def matrix_build_tasks(self): """Tasks for all matrices that need to be built as a part of this Experiment. Each task contains arguments understood by ``Architect.build_matrix``. Returns: (list) of dicts """ (updated_split_definitions, matrix_build_tasks) = self.planner.generate_plans( self.split_definitions, self.feature_dicts) self.full_matrix_definitions = updated_split_definitions return matrix_build_tasks @cachedproperty def full_matrix_definitions(self): """Full matrix definitions Returns: (list) temporal and feature information for each matrix """ (updated_split_definitions, matrix_build_tasks) = self.planner.generate_plans( self.split_definitions, self.feature_dicts) self.matrix_build_tasks = matrix_build_tasks return updated_split_definitions @property def all_label_timespans(self): """All train and test label timespans Returns: (list) label timespans, in string form as they appeared in the experiment config """ return list( set(self.config['temporal_config']['training_label_timespans'] + self.config['temporal_config']['test_label_timespans'])) def generate_labels(self): """Generate labels based on experiment configuration Results are stored in the database, not returned """ self.label_generator.generate_all_labels(self.labels_table_name, self.all_as_of_times, self.all_label_timespans) def generate_sparse_states(self): self.state_table_generator.generate_sparse_table( as_of_dates=self.all_as_of_times) def log_split(self, split_num, split): logging.info( 'Starting train/test for %s out of %s: train range: %s to %s', split_num + 1, len(self.full_matrix_definitions), split['train_matrix']['first_as_of_time'], split['train_matrix']['matrix_info_end_time'], ) def matrix_store(self, matrix_uuid): """Construct a matrix store for a given matrix uuid, using the Experiment's #matrix_store_class Args: matrix_uuid (string) A uuid for a matrix """ matrix_store = self.matrix_store_class( matrix_path=os.path.join(self.matrices_directory, '{}.csv'.format(matrix_uuid)), metadata_path=os.path.join(self.matrices_directory, '{}.yaml'.format(matrix_uuid))) return matrix_store @abstractmethod def process_train_tasks(self, train_tasks): pass @abstractmethod def process_query_tasks(self, query_tasks): pass @abstractmethod def process_matrix_build_tasks(self, matrix_build_tasks): pass def generate_preimputation_features(self): self.process_query_tasks(self.feature_aggregation_table_tasks) def generate_imputed_features(self): self.process_query_tasks(self.feature_imputation_table_tasks) def build_matrices(self): self.process_matrix_build_tasks(self.matrix_build_tasks) def generate_matrices(self): logging.info('Creating sparse states') self.generate_sparse_states() logging.info('Creating labels') self.generate_labels() logging.info('Creating feature aggregation tables') self.generate_preimputation_features() logging.info('Creating feature imputation tables') self.generate_imputed_features() logging.info('Building all matrices') self.build_matrices() def train_and_test_models(self): for split_num, split in enumerate(self.full_matrix_definitions): self.log_split(split_num, split) train_store = self.matrix_store(split['train_uuid']) if train_store.empty: logging.warning( '''Train matrix for split %s was empty, no point in training this model. Skipping ''', split['train_uuid']) continue if len(train_store.labels().unique()) == 1: logging.warning( '''Train Matrix for split %s had only one unique value, no point in training this model. Skipping ''', split['train_uuid']) continue logging.info('Training models') train_tasks = self.trainer.generate_train_tasks( grid_config=self.config['grid_config'], misc_db_parameters=dict( test=False, model_comment=self.config.get('model_comment', None), ), matrix_store=train_store) model_ids = self.process_train_tasks(train_tasks) logging.info('Done training models for split %s', split_num) test_tasks = self.tester.generate_model_test_tasks( split=split, train_store=train_store, model_ids=model_ids, matrix_store_creator=self.matrix_store) logging.info('Found %s non-empty test matrices for split %s', len(test_tasks), split_num) self.process_model_test_tasks(test_tasks) def validate(self): ExperimentValidator(self.db_engine).run(self.config) self.print_time_split_summary() def _run(self): try: logging.info('Generating matrices') self.generate_matrices() finally: logging.info('Cleaning up state table') with timeout(self.cleanup_timeout): self.state_table_generator.clean_up() self.db_engine.execute('drop table if exists {}'.format( self.labels_table_name)) self.train_and_test_models() def run(self): try: self._run() except Exception: logging.exception('Run interrupted by uncaught exception') raise __call__ = run
def initialize_components(self): split_config = self.config['temporal_config'] self.chopper = Timechop( feature_start_time=dt_from_str(split_config['feature_start_time']), feature_end_time=dt_from_str(split_config['feature_end_time']), label_start_time=dt_from_str(split_config['label_start_time']), label_end_time=dt_from_str(split_config['label_end_time']), model_update_frequency=split_config['model_update_frequency'], training_label_timespans=split_config['training_label_timespans'], test_label_timespans=split_config['test_label_timespans'], training_as_of_date_frequencies=split_config[ 'training_as_of_date_frequencies'], test_as_of_date_frequencies=split_config[ 'test_as_of_date_frequencies'], max_training_histories=split_config['max_training_histories'], test_durations=split_config['test_durations'], ) cohort_config = self.config.get('cohort_config', {}) if 'query' in cohort_config: self.state_table_generator = StateTableGeneratorFromQuery( experiment_hash=self.experiment_hash, db_engine=self.db_engine, query=cohort_config['query']) elif 'entities_table' in cohort_config: self.state_table_generator = StateTableGeneratorFromEntities( experiment_hash=self.experiment_hash, db_engine=self.db_engine, entities_table=cohort_config['entities_table']) elif 'dense_states' in cohort_config: self.state_table_generator = StateTableGeneratorFromDense( experiment_hash=self.experiment_hash, db_engine=self.db_engine, dense_state_table=cohort_config['dense_states']['table_name']) else: raise ValueError('Cohort config missing or unrecognized') self.label_generator = LabelGenerator( label_name=self.config['label_config'].get('name', None), query=self.config['label_config']['query'], db_engine=self.db_engine, ) self.feature_dictionary_creator = FeatureDictionaryCreator( features_schema_name=self.features_schema_name, db_engine=self.db_engine, ) self.feature_generator = FeatureGenerator( features_schema_name=self.features_schema_name, replace=self.replace, db_engine=self.db_engine, feature_start_time=split_config['feature_start_time']) self.feature_group_creator = FeatureGroupCreator( self.config.get('feature_group_definition', {'all': [True]})) self.feature_group_mixer = FeatureGroupMixer( self.config.get('feature_group_strategies', ['all'])) self.planner = Planner( feature_start_time=dt_from_str(split_config['feature_start_time']), label_names=[ self.config.get('label_config', {}).get('name', DEFAULT_LABEL_NAME) ], label_types=['binary'], matrix_directory=self.matrices_directory, cohort_name=self.config.get('cohort_config', {}).get('name', None), states=self.config.get('cohort_config', {}).get('dense_states', {}).get('state_filters', []), user_metadata=self.config.get('user_metadata', {}), ) self.matrix_builder = HighMemoryCSVBuilder( db_config={ 'features_schema_name': self.features_schema_name, 'labels_schema_name': 'public', 'labels_table_name': self.labels_table_name, # TODO: have planner/builder take state table later on, so we # can grab it from the StateTableGenerator instead of # duplicating it here 'sparse_state_table_name': 'tmp_sparse_states_{}'.format(self.experiment_hash), }, matrix_directory=self.matrices_directory, include_missing_labels_in_train_as=self.config['label_config'].get( 'include_missing_labels_in_train_as', None), engine=self.db_engine, replace=self.replace) self.trainer = ModelTrainer( project_path=self.project_path, experiment_hash=self.experiment_hash, model_storage_engine=self.model_storage_engine, model_grouper=ModelGrouper(self.config.get('model_group_keys', [])), db_engine=self.db_engine, replace=self.replace) self.tester = ModelTester( model_storage_engine=self.model_storage_engine, project_path=self.project_path, replace=self.replace, db_engine=self.db_engine, individual_importance_config=self.config.get( 'individual_importance', {}), evaluator_config=self.config.get('scoring', {}))
def __init__(self, db_engine, project_path, model_group_id): self.retrain_hash = None self.db_engine = db_engine upgrade_db(db_engine=self.db_engine) self.project_storage = ProjectStorage(project_path) self.model_group_id = model_group_id self.model_group_info = get_model_group_info(self.db_engine, self.model_group_id) self.matrix_storage_engine = self.project_storage.matrix_storage_engine( ) self.triage_run_id, self.experiment_config = experiment_config_from_model_group_id( self.db_engine, self.model_group_id) # This feels like it needs some refactoring since in some edge cases at least the test matrix temporal parameters # might differ across models in the mdoel group (the training ones shouldn't), but this should probably work for # the vast majorty of use cases... self.experiment_config['temporal_config'].update( temporal_params_from_matrix_metadata( self.db_engine, self.model_group_info['model_id_last_split'])) # Since "testing" here is predicting forward to a single new date, the test_duration should always be '0day' # (regardless of what it may have been before) self.experiment_config['temporal_config']['test_durations'] = ['0day'] # These lists should now only contain one item (the value actually used for the last model in this group) self.training_label_timespan = self.experiment_config[ 'temporal_config']['training_label_timespans'][0] self.test_label_timespan = self.experiment_config['temporal_config'][ 'test_label_timespans'][0] self.test_duration = self.experiment_config['temporal_config'][ 'test_durations'][0] self.feature_start_time = self.experiment_config['temporal_config'][ 'feature_start_time'] self.label_name = self.experiment_config['label_config']['name'] self.cohort_name = self.experiment_config['cohort_config']['name'] self.user_metadata = self.experiment_config['user_metadata'] self.feature_dictionary_creator = FeatureDictionaryCreator( features_schema_name='triage_production', db_engine=self.db_engine) self.label_generator = LabelGenerator( label_name=self.experiment_config['label_config'].get( "name", None), query=self.experiment_config['label_config']["query"], replace=True, db_engine=self.db_engine, ) self.labels_table_name = "labels_{}_{}_production".format( self.experiment_config['label_config'].get('name', 'default'), filename_friendly_hash( self.experiment_config['label_config']['query'])) self.feature_generator = FeatureGenerator( db_engine=self.db_engine, features_schema_name="triage_production", feature_start_time=self.feature_start_time, ) self.model_trainer = ModelTrainer( experiment_hash=None, model_storage_engine=ModelStorageEngine(self.project_storage), db_engine=self.db_engine, replace=True, run_id=self.triage_run_id, )
class Retrainer: """Given a model_group_id and prediction_date, retrain a model using the all the data till prediction_date Args: db_engine (sqlalchemy.engine) project_path (string) model_group_id (string) """ def __init__(self, db_engine, project_path, model_group_id): self.retrain_hash = None self.db_engine = db_engine upgrade_db(db_engine=self.db_engine) self.project_storage = ProjectStorage(project_path) self.model_group_id = model_group_id self.model_group_info = get_model_group_info(self.db_engine, self.model_group_id) self.matrix_storage_engine = self.project_storage.matrix_storage_engine( ) self.triage_run_id, self.experiment_config = experiment_config_from_model_group_id( self.db_engine, self.model_group_id) # This feels like it needs some refactoring since in some edge cases at least the test matrix temporal parameters # might differ across models in the mdoel group (the training ones shouldn't), but this should probably work for # the vast majorty of use cases... self.experiment_config['temporal_config'].update( temporal_params_from_matrix_metadata( self.db_engine, self.model_group_info['model_id_last_split'])) # Since "testing" here is predicting forward to a single new date, the test_duration should always be '0day' # (regardless of what it may have been before) self.experiment_config['temporal_config']['test_durations'] = ['0day'] # These lists should now only contain one item (the value actually used for the last model in this group) self.training_label_timespan = self.experiment_config[ 'temporal_config']['training_label_timespans'][0] self.test_label_timespan = self.experiment_config['temporal_config'][ 'test_label_timespans'][0] self.test_duration = self.experiment_config['temporal_config'][ 'test_durations'][0] self.feature_start_time = self.experiment_config['temporal_config'][ 'feature_start_time'] self.label_name = self.experiment_config['label_config']['name'] self.cohort_name = self.experiment_config['cohort_config']['name'] self.user_metadata = self.experiment_config['user_metadata'] self.feature_dictionary_creator = FeatureDictionaryCreator( features_schema_name='triage_production', db_engine=self.db_engine) self.label_generator = LabelGenerator( label_name=self.experiment_config['label_config'].get( "name", None), query=self.experiment_config['label_config']["query"], replace=True, db_engine=self.db_engine, ) self.labels_table_name = "labels_{}_{}_production".format( self.experiment_config['label_config'].get('name', 'default'), filename_friendly_hash( self.experiment_config['label_config']['query'])) self.feature_generator = FeatureGenerator( db_engine=self.db_engine, features_schema_name="triage_production", feature_start_time=self.feature_start_time, ) self.model_trainer = ModelTrainer( experiment_hash=None, model_storage_engine=ModelStorageEngine(self.project_storage), db_engine=self.db_engine, replace=True, run_id=self.triage_run_id, ) def get_temporal_config_for_retrain(self, prediction_date): temporal_config = self.experiment_config['temporal_config'].copy() temporal_config['feature_end_time'] = datetime.strftime( prediction_date, "%Y-%m-%d") temporal_config['label_end_time'] = datetime.strftime( prediction_date + convert_str_to_relativedelta(self.test_label_timespan), "%Y-%m-%d") # just needs to be bigger than the gap between the label start and end times # to ensure we only get one time split for the retraining temporal_config['model_update_frequency'] = '%syears' % ( dt_from_str(temporal_config['label_end_time']).year - dt_from_str(temporal_config['label_start_time']).year + 10) return temporal_config def generate_all_labels(self, as_of_date): self.label_generator.generate_all_labels( labels_table=self.labels_table_name, as_of_dates=[as_of_date], label_timespans=[self.training_label_timespan]) def generate_entity_date_table(self, as_of_date, entity_date_table_name): cohort_table_generator = EntityDateTableGenerator( db_engine=self.db_engine, query=self.experiment_config['cohort_config']['query'], entity_date_table_name=entity_date_table_name) cohort_table_generator.generate_entity_date_table( as_of_dates=[dt_from_str(as_of_date)]) def get_collate_aggregations(self, as_of_date, state_table): collate_aggregations = self.feature_generator.aggregations( feature_aggregation_config=self. experiment_config['feature_aggregations'], feature_dates=[as_of_date], state_table=state_table) return collate_aggregations def get_feature_dict_and_imputation_task(self, collate_aggregations, model_id): (train_matrix_uuid, matrix_metadata) = train_matrix_info_from_model_id( self.db_engine, model_id) reconstructed_feature_dict = FeatureGroup() imputation_table_tasks = OrderedDict() for aggregation in collate_aggregations: feature_group, feature_names = get_feature_names( aggregation, matrix_metadata) reconstructed_feature_dict[feature_group] = feature_names # Make sure that the features imputed in training should also be imputed in production features_imputed_in_train = get_feature_needs_imputation_in_train( aggregation, feature_names) features_imputed_in_production = get_feature_needs_imputation_in_production( aggregation, self.db_engine) total_impute_cols = set(features_imputed_in_production) | set( features_imputed_in_train) total_nonimpute_cols = set(f for f in set(feature_names) if '_imp' not in f) - total_impute_cols task_generator = self.feature_generator._generate_imp_table_tasks_for imputation_table_tasks.update( task_generator(aggregation, impute_cols=list(total_impute_cols), nonimpute_cols=list(total_nonimpute_cols))) return reconstructed_feature_dict, imputation_table_tasks def retrain(self, prediction_date): """Retrain a model by going back one split from prediction_date, so the as_of_date for training would be (prediction_date - training_label_timespan) Args: prediction_date(str) """ # Retrain config and hash retrain_config = { "model_group_id": self.model_group_id, "prediction_date": prediction_date, "test_label_timespan": self.test_label_timespan, "test_duration": self.test_duration, } self.retrain_hash = save_retrain_and_get_hash(retrain_config, self.db_engine) with get_for_update(self.db_engine, Retrain, self.retrain_hash) as retrain: retrain.prediction_date = prediction_date # Timechop prediction_date = dt_from_str(prediction_date) temporal_config = self.get_temporal_config_for_retrain(prediction_date) timechopper = Timechop(**temporal_config) chops = timechopper.chop_time() assert len(chops) == 1 chops_train_matrix = chops[0]['train_matrix'] as_of_date = datetime.strftime(chops_train_matrix['last_as_of_time'], "%Y-%m-%d") retrain_definition = { 'first_as_of_time': chops_train_matrix['first_as_of_time'], 'last_as_of_time': chops_train_matrix['last_as_of_time'], 'matrix_info_end_time': chops_train_matrix['matrix_info_end_time'], 'as_of_times': [as_of_date], 'training_label_timespan': chops_train_matrix['training_label_timespan'], 'max_training_history': chops_train_matrix['max_training_history'], 'training_as_of_date_frequency': chops_train_matrix['training_as_of_date_frequency'], } # Set ExperimentRun run = TriageRun( start_time=datetime.now(), git_hash=infer_git_hash(), triage_version=infer_triage_version(), python_version=infer_python_version(), run_type="retrain", run_hash=self.retrain_hash, last_updated_time=datetime.now(), current_status=TriageRunStatus.started, installed_libraries=infer_installed_libraries(), platform=platform.platform(), os_user=getpass.getuser(), working_directory=os.getcwd(), ec2_instance_type=infer_ec2_instance_type(), log_location=infer_log_location(), experiment_class_path=classpath(self.__class__), random_seed=retrieve_experiment_seed_from_run_id( self.db_engine, self.triage_run_id), ) run_id = None with scoped_session(self.db_engine) as session: session.add(run) session.commit() run_id = run.run_id if not run_id: raise ValueError("Failed to retrieve run_id from saved row") # set ModelTrainer's run_id and experiment_hash for Retrain run self.model_trainer.run_id = run_id self.model_trainer.experiment_hash = self.retrain_hash # 1. Generate all labels self.generate_all_labels(as_of_date) record_labels_table_name(run_id, self.db_engine, self.labels_table_name) # 2. Generate cohort cohort_table_name = f"triage_production.cohort_{self.experiment_config['cohort_config']['name']}_retrain" self.generate_entity_date_table(as_of_date, cohort_table_name) record_cohort_table_name(run_id, self.db_engine, cohort_table_name) # 3. Generate feature aggregations collate_aggregations = self.get_collate_aggregations( as_of_date, cohort_table_name) feature_aggregation_table_tasks = self.feature_generator.generate_all_table_tasks( collate_aggregations, task_type='aggregation') self.feature_generator.process_table_tasks( feature_aggregation_table_tasks) # 4. Reconstruct feature disctionary from feature_names and generate imputation reconstructed_feature_dict, imputation_table_tasks = self.get_feature_dict_and_imputation_task( collate_aggregations, self.model_group_info['model_id_last_split'], ) feature_group_creator = FeatureGroupCreator( self.experiment_config['feature_group_definition']) feature_group_mixer = FeatureGroupMixer(["all"]) feature_group_dict = feature_group_mixer.generate( feature_group_creator.subsets(reconstructed_feature_dict))[0] self.feature_generator.process_table_tasks(imputation_table_tasks) # 5. Build new matrix db_config = { "features_schema_name": "triage_production", "labels_schema_name": "public", "cohort_table_name": cohort_table_name, "labels_table_name": self.labels_table_name, } record_matrix_building_started(run_id, self.db_engine) matrix_builder = MatrixBuilder( db_config=db_config, matrix_storage_engine=self.matrix_storage_engine, engine=self.db_engine, experiment_hash=None, replace=True, ) new_matrix_metadata = Planner.make_metadata( matrix_definition=retrain_definition, feature_dictionary=feature_group_dict, label_name=self.label_name, label_type='binary', cohort_name=self.cohort_name, matrix_type='train', feature_start_time=dt_from_str(self.feature_start_time), user_metadata=self.user_metadata, ) new_matrix_metadata['matrix_id'] = "_".join([ self.label_name, 'binary', str(as_of_date), 'retrain', ]) matrix_uuid = filename_friendly_hash(new_matrix_metadata) matrix_builder.build_matrix( as_of_times=[as_of_date], label_name=self.label_name, label_type='binary', feature_dictionary=feature_group_dict, matrix_metadata=new_matrix_metadata, matrix_uuid=matrix_uuid, matrix_type="train", ) retrain_model_comment = 'retrain_' + str(datetime.now()) misc_db_parameters = { 'train_end_time': dt_from_str(as_of_date), 'test': False, 'train_matrix_uuid': matrix_uuid, 'training_label_timespan': self.training_label_timespan, 'model_comment': retrain_model_comment, } # get the random seed from the last split last_split_train_matrix_uuid, last_split_matrix_metadata = train_matrix_info_from_model_id( self.db_engine, model_id=self.model_group_info['model_id_last_split']) random_seed = self.model_trainer.get_or_generate_random_seed( model_group_id=self.model_group_id, matrix_metadata=last_split_matrix_metadata, train_matrix_uuid=last_split_train_matrix_uuid) # create retrain model hash retrain_model_hash = self.model_trainer._model_hash( self.matrix_storage_engine.get_store(matrix_uuid).metadata, class_path=self.model_group_info['model_type'], parameters=self.model_group_info['hyperparameters'], random_seed=random_seed, ) associate_models_with_retrain(self.retrain_hash, (retrain_model_hash, ), self.db_engine) record_model_building_started(run_id, self.db_engine) retrain_model_id = self.model_trainer.process_train_task( matrix_store=self.matrix_storage_engine.get_store(matrix_uuid), class_path=self.model_group_info['model_type'], parameters=self.model_group_info['hyperparameters'], model_hash=retrain_model_hash, misc_db_parameters=misc_db_parameters, random_seed=random_seed, retrain=True, model_group_id=self.model_group_id) self.retrain_model_hash = retrieve_model_hash_from_id( self.db_engine, retrain_model_id) self.retrain_matrix_uuid = matrix_uuid self.retrain_model_id = retrain_model_id return { 'retrain_model_comment': retrain_model_comment, 'retrain_model_id': retrain_model_id } def predict(self, prediction_date): """Predict forward by creating a matrix using as_of_date = prediction_date and applying the retrain model on it Args: prediction_date(str) """ cohort_table_name = f"triage_production.cohort_{self.experiment_config['cohort_config']['name']}_predict" # 1. Generate cohort self.generate_entity_date_table(prediction_date, cohort_table_name) # 2. Generate feature aggregations collate_aggregations = self.get_collate_aggregations( prediction_date, cohort_table_name) self.feature_generator.process_table_tasks( self.feature_generator.generate_all_table_tasks( collate_aggregations, task_type='aggregation')) # 3. Reconstruct feature disctionary from feature_names and generate imputation reconstructed_feature_dict, imputation_table_tasks = self.get_feature_dict_and_imputation_task( collate_aggregations, self.retrain_model_id) self.feature_generator.process_table_tasks(imputation_table_tasks) # 4. Build matrix db_config = { "features_schema_name": "triage_production", "labels_schema_name": "public", "cohort_table_name": cohort_table_name, } matrix_builder = MatrixBuilder( db_config=db_config, matrix_storage_engine=self.matrix_storage_engine, engine=self.db_engine, experiment_hash=None, replace=True, ) # Use timechop to get the time definition for production temporal_config = self.get_temporal_config_for_retrain( dt_from_str(prediction_date)) timechopper = Timechop(**temporal_config) retrain_config = get_retrain_config_from_model_id( self.db_engine, self.retrain_model_id) prod_definitions = timechopper.define_test_matrices( train_test_split_time=dt_from_str(prediction_date), test_duration=retrain_config['test_duration'], test_label_timespan=retrain_config['test_label_timespan']) last_split_definition = prod_definitions[-1] matrix_metadata = Planner.make_metadata( matrix_definition=last_split_definition, feature_dictionary=reconstructed_feature_dict, label_name=self.label_name, label_type='binary', cohort_name=self.cohort_name, matrix_type='production', feature_start_time=self.feature_start_time, user_metadata=self.user_metadata, ) matrix_metadata['matrix_id'] = str( prediction_date ) + f'_model_id_{self.retrain_model_id}' + '_risklist' matrix_uuid = filename_friendly_hash(matrix_metadata) matrix_builder.build_matrix( as_of_times=[prediction_date], label_name=self.label_name, label_type='binary', feature_dictionary=reconstructed_feature_dict, matrix_metadata=matrix_metadata, matrix_uuid=matrix_uuid, matrix_type="production", ) # 5. Predict the risk score for production predictor = Predictor( model_storage_engine=self.project_storage.model_storage_engine(), db_engine=self.db_engine, rank_order='best') predictor.predict( model_id=self.retrain_model_id, matrix_store=self.matrix_storage_engine.get_store(matrix_uuid), misc_db_parameters={}, train_matrix_columns=self.matrix_storage_engine.get_store( self.retrain_matrix_uuid).columns(), ) self.predict_matrix_uuid = matrix_uuid