def test_peeler_several_chunksize(): dataio = DataIO(dirname='test_peeler') print(dataio) catalogue = dataio.load_catalogue(chan_grp=0) all_spikes = [] sig_length = dataio.get_segment_length(0) chunksizes = [174, 512, 1024, 1023, 10000, 150000] #~ chunksizes = [512, 1024,] for chunksize in chunksizes: print('**', chunksize, '**') peeler = Peeler(dataio) peeler.change_params(engine='geometrical', catalogue=catalogue, chunksize=chunksize, argmin_method='numba') t1 = time.perf_counter() peeler.run(progressbar=False) t2 = time.perf_counter() print('extra_size', peeler.peeler_engine.extra_size, 'n_span', peeler.peeler_engine.n_span, 'peak_width', peeler.peeler_engine.peak_width) print('peeler.run_loop', t2 - t1) # copy is need because the memmap is reset at each loop spikes = dataio.get_spikes(seg_num=0, chan_grp=0).copy() all_spikes.append(spikes) print(spikes.size) # clip to last spike last = min([spikes[-1]['index'] for spikes in all_spikes]) for i, chunksize in enumerate(chunksizes): spikes = all_spikes[i] all_spikes[i] = spikes[spikes['index'] <= last] previsous_spikes = None for i, chunksize in enumerate(chunksizes): print('**', chunksize, '**') spikes = all_spikes[i] is_sorted = np.all(np.diff(spikes['index']) >= 0) assert is_sorted labeled_spike = spikes[spikes['cluster_label'] >= 0] unlabeled_spike = spikes[spikes['cluster_label'] < 0] print('labeled_spike.size', labeled_spike.size, 'unlabeled_spike.size', unlabeled_spike.size) print(spikes) # TODO: Peeler chunksize influence the number of spikes if previsous_spikes is not None: assert previsous_spikes.size == spikes.size np.testing.assert_array_equal(previsous_spikes['index'], spikes['index']) np.testing.assert_array_equal(previsous_spikes['cluster_label'], spikes['cluster_label']) previsous_spikes = spikes
def test_peeler_several_chunksize(): dataio = DataIO(dirname='test_peeler') print(dataio) catalogue = dataio.load_catalogue(chan_grp=0) all_spikes = [] sig_length = dataio.get_segment_length(0) chunksizes = [174, 512, 1024, 1023, 10000, 150000] #~ chunksizes = [512, 1024,] for chunksize in chunksizes: print('**', chunksize, '**') peeler = Peeler(dataio) peeler.change_params(catalogue=catalogue, chunksize=chunksize) t1 = time.perf_counter() peeler.run_offline_loop_one_segment(seg_num=0, progressbar=False) t2 = time.perf_counter() print('n_side', peeler.n_side, 'n_span', peeler.n_span, 'peak_width', peeler.peak_width) print('peeler.run_loop', t2 - t1) spikes = dataio.get_spikes(seg_num=0, chan_grp=0) all_spikes.append(spikes) # clip to last spike last = min([spikes[-1]['index'] for spikes in all_spikes]) for i, chunksize in enumerate(chunksizes): spikes = all_spikes[i] all_spikes[i] = spikes[spikes['index'] <= last] previsous_spikes = None for i, chunksize in enumerate(chunksizes): print('**', chunksize, '**') spikes = all_spikes[i] is_sorted = np.all(np.diff(spikes['index']) >= 0) assert is_sorted labeled_spike = spikes[spikes['cluster_label'] >= 0] unlabeled_spike = spikes[spikes['cluster_label'] < 0] print('labeled_spike.size', labeled_spike.size, 'unlabeled_spike.size', unlabeled_spike.size) if previsous_spikes is not None: assert previsous_spikes.size == spikes.size np.testing.assert_array_equal(previsous_spikes['index'], spikes['index']) np.testing.assert_array_equal(previsous_spikes['cluster_label'], spikes['cluster_label']) previsous_spikes = spikes
def test_peeler_empty_catalogue(): """ This test peeler with empty catalogue. This is like a peak detector. Check several chunksize and compare to offline-one-buffer. """ dataio = DataIO(dirname='test_peeler') #~ print(dataio) catalogue = dataio.load_catalogue(chan_grp=0) # empty catalogue for debug peak detection s = catalogue['centers0'].shape empty_centers = np.zeros((0, s[1], s[2]), dtype='float32') catalogue['centers0'] = empty_centers catalogue['centers1'] = empty_centers catalogue['centers2'] = empty_centers catalogue['cluster_labels'] = np.zeros(0, dtype=catalogue['cluster_labels'].dtype) sig_length = dataio.get_segment_length(0) chunksizes = [ 101, 174, 512, 1024, 1023, 10000, 150000] #~ chunksizes = [1024,] previous_peak = None for chunksize in chunksizes: print('**', chunksize, '**') peeler = Peeler(dataio) peeler.change_params(engine='classic', catalogue=catalogue,chunksize=chunksize) t1 = time.perf_counter() #~ peeler.run(progressbar=False) peeler.run_offline_loop_one_segment(seg_num=0, progressbar=False) t2 = time.perf_counter() #~ print('n_side', peeler.n_side, 'n_span', peeler.n_span, 'peak_width', peeler.peak_width) #~ print('peeler.run_loop', t2-t1) spikes = dataio.get_spikes(seg_num=0, chan_grp=0) labeled_spike = spikes[spikes['cluster_label']>=0] unlabeled_spike = spikes[spikes['cluster_label']<0] assert labeled_spike.size == 0 is_sorted = np.all(np.diff(unlabeled_spike['index'])>=0) assert is_sorted online_peaks = unlabeled_spike['index'] engine = peeler.peeler_engine i_stop = sig_length-catalogue['signal_preprocessor_params']['lostfront_chunksize']-engine.n_side+engine.n_span sigs = dataio.get_signals_chunk(signal_type='processed', i_stop=i_stop) offline_peaks = detect_peaks_in_chunk(sigs, engine.n_span, engine.relative_threshold, engine.peak_sign) offline_peaks = offline_peaks[offline_peaks<=online_peaks[-1]] assert offline_peaks.size == online_peaks.size np.testing.assert_array_equal(offline_peaks, online_peaks) if previous_peak is not None: last = min(previous_peak[-1], online_peaks[-1]) previous_peak = previous_peak[previous_peak<=last] online_peaks_cliped = online_peaks[online_peaks<=last] assert previous_peak.size == online_peaks_cliped.size np.testing.assert_array_equal(previous_peak, online_peaks_cliped) previous_peak = online_peaks