def test_clustering(): dataio = DataIO(dirname = 'datatest') sigs = dataio.get_signals(seg_num=0) #peak peakdetector = PeakDetector(sigs) peak_pos = peakdetector.detect_peaks(threshold=-4, peak_sign = '-', n_span = 2) #waveforms waveformextractor = WaveformExtractor(peakdetector, n_left=-30, n_right=50) limit_left, limit_right = waveformextractor.find_good_limits(mad_threshold = 1.1) short_wf = waveformextractor.get_ajusted_waveforms() print(short_wf.shape) #clustering clustering = Clustering(short_wf) #PCA features = clustering.project(method = 'pca', n_components = 5) clustering.plot_projection(plot_density = True) #Kmean labels = clustering.find_clusters(7) clustering.plot_projection(plot_density = True) #ùake catalogue catalogue = clustering.construct_catalogue() clustering.plot_derivatives() clustering.plot_catalogue() clustering.merge_cluster(1,2) clustering.split_cluster(1, 2)
def test_peeler(): dataio = DataIO(dirname = 'datatest') #~ dataio = DataIO(dirname = 'datatest_neo') sigs = dataio.get_signals(seg_num=0) #peak peakdetector = PeakDetector(sigs) peak_pos = peakdetector.detect_peaks(threshold=-4, peak_sign = '-', n_span = 5) #waveforms waveformextractor = WaveformExtractor(peakdetector, n_left=-30, n_right=50) limit_left, limit_right = waveformextractor.find_good_limits(mad_threshold = 1.1) #~ print(limit_left, limit_right) short_wf = waveformextractor.get_ajusted_waveforms() #~ print(short_wf.shape) #clustering clustering = Clustering(short_wf) features = clustering.project(method = 'pca', n_components = 4) clustering.find_clusters(8, order_clusters = True) catalogue = clustering.construct_catalogue() #~ clustering.plot_catalogue(sameax = False) #~ clustering.plot_catalogue(sameax = True) #~ clustering.merge_cluster(1, 2) catalogue = clustering.construct_catalogue() clustering.plot_catalogue(sameax = False) #~ clustering.plot_catalogue(sameax = True) #peeler signals = peakdetector.normed_sigs peeler = Peeler(signals, catalogue, limit_left, limit_right, threshold=-5., peak_sign = '-', n_span = 5) prediction0, residuals0 = peeler.peel() prediction1, residuals1 = peeler.peel() spiketrains = peeler.get_spiketrains() print(spiketrains) fig, axs = pyplot.subplots(nrows = 6, sharex = True)#, sharey = True) axs[0].plot(signals) axs[1].plot(prediction0) axs[2].plot(residuals0) axs[3].plot(prediction1) axs[4].plot(residuals1) for i in range(5): axs[i].set_ylim(-25, 10) peeler.plot_spiketrains(ax = axs[5])
def test_peeler(): dataio = DataIO(dirname = 'datatest') sigs = dataio.get_signals(seg_num=0) #peak peakdetector = PeakDetector(sigs) peak_pos = peakdetector.detect_peaks(threshold=-4, peak_sign = '-', n_span = 5) #waveforms waveformextractor = WaveformExtractor(peakdetector, n_left=-30, n_right=50) limit_left, limit_right = waveformextractor.find_good_limits(mad_threshold = 1.1) #~ print(limit_left, limit_right) short_wf = waveformextractor.get_ajusted_waveforms(margin=2) #~ print(short_wf.shape) #clustering clustering = Clustering(short_wf) features = clustering.project(method = 'pca', n_components = 5) clustering.find_clusters(7) catalogue = clustering.construct_catalogue() clustering.plot_catalogue() #peeler signals = peakdetector.normed_sigs peeler = Peeler(signals, catalogue, limit_left, limit_right, threshold=-4, peak_sign = '-', n_span = 5) prediction0, residuals0 = peeler.peel() prediction1, residuals1 = peeler.peel() fig, axs = pyplot.subplots(nrows = 6, sharex = True)#, sharey = True) axs[0].plot(signals) axs[1].plot(prediction0) axs[2].plot(residuals0) axs[3].plot(prediction1) axs[4].plot(residuals1) colors = sns.color_palette('husl', len(catalogue)) spiketrains = peeler.get_spiketrains() i = 0 for k , pos in spiketrains.items(): axs[5].plot(pos, np.ones(pos.size)*k, ls = 'None', marker = '|', markeredgecolor = colors[i], markersize = 10, markeredgewidth = 2) i += 1 axs[5].set_ylim(0, len(catalogue))
def plot_interpolation(): dataio = DataIO(dirname = 'datatest') sigs = dataio.get_signals(seg_num=0) #peak peakdetector = PeakDetector(sigs) peak_pos = peakdetector.detect_peaks(threshold=-4, peak_sign = '-', n_span = 5) #waveforms waveformextractor = WaveformExtractor(peakdetector, n_left=-30, n_right=50) limit_left, limit_right = waveformextractor.find_good_limits(mad_threshold = 1.1) #~ print(limit_left, limit_right) short_wf = waveformextractor.get_ajusted_waveforms(margin=2) #~ print(short_wf.shape) #clustering clustering = Clustering(short_wf) features = clustering.project(method = 'pca', n_components = 5) clustering.find_clusters(7) catalogue = clustering.construct_catalogue() k = list(catalogue.keys())[1] w0 = catalogue[k]['center'] w1 = catalogue[k]['centerD'] w2 = catalogue[k]['centerDD'] fig, ax = pyplot.subplots() t = np.arange(w0.size) colors = sns.color_palette('husl', 12) all = [] jitters = np.arange(-.5,.5,.1) for i, jitter in enumerate(jitters): pred = w0 + jitter*w1 + jitter**2/2.*w2 all.append(pred) ax.plot(t+jitter, pred, marker = 'o', label = str(jitter), color = colors[i], linestyle = 'None') ax.plot(t, w0, marker = '*', markersize = 4, label = 'w0', lw = 1, color = 'k') all = np.array(all) interpolated = all.transpose().flatten() t2 = np.arange(interpolated.size)/all.shape[0] + jitters[0] ax.plot(t2, interpolated, label = 'interp', lw = 1, color = 'm')