示例#1
0
def test_randomize_hyperparameters_samples_different_values_for_multi_dimensional_params(
) -> None:
    kernel = gpflow.kernels.RBF(variance=1.0, lengthscales=[0.2, 0.2])
    upper = tf.cast([10.0] * 2, dtype=tf.float64)
    lower = upper / 100
    kernel.lengthscales = gpflow.Parameter(kernel.lengthscales,
                                           transform=tfp.bijectors.Sigmoid(
                                               low=lower, high=upper))
    randomize_hyperparameters(kernel)
    npt.assert_raises(AssertionError, npt.assert_allclose,
                      kernel.lengthscales[0], kernel.lengthscales[1])
示例#2
0
def test_randomize_hyperparameters_randomizes_kernel_parameters_with_priors(
        dim: int) -> None:
    kernel = gpflow.kernels.RBF(variance=1.0, lengthscales=[0.2] * dim)
    kernel.lengthscales.prior = tfp.distributions.LogNormal(loc=tf.math.log(
        kernel.lengthscales),
                                                            scale=1.0)
    randomize_hyperparameters(kernel)

    npt.assert_allclose(1.0, kernel.variance)
    npt.assert_array_equal(dim, kernel.lengthscales.shape)
    npt.assert_raises(AssertionError, npt.assert_allclose, [0.2] * dim,
                      kernel.lengthscales)
示例#3
0
def test_randomize_hyperparameters_randomizes_constrained_kernel_parameters(
        dim: int) -> None:
    kernel = gpflow.kernels.RBF(variance=1.0, lengthscales=[0.2] * dim)
    upper = tf.cast([10.0] * dim, dtype=tf.float64)
    lower = upper / 100
    kernel.lengthscales = gpflow.Parameter(kernel.lengthscales,
                                           transform=tfp.bijectors.Sigmoid(
                                               low=lower, high=upper))

    randomize_hyperparameters(kernel)

    npt.assert_allclose(1.0, kernel.variance)
    npt.assert_array_equal(dim, kernel.lengthscales.shape)
    npt.assert_raises(AssertionError, npt.assert_allclose, [0.2] * dim,
                      kernel.lengthscales)
示例#4
0
def test_randomize_hyperparameters_randomizes_kernel_parameters_with_constraints_or_priors(
    dim: int, ) -> None:
    kernel = gpflow.kernels.RBF(variance=1.0, lengthscales=[0.2] * dim)
    upper = tf.cast([10.0] * dim, dtype=tf.float64)
    lower = upper / 100
    kernel.lengthscales = gpflow.Parameter(kernel.lengthscales,
                                           transform=tfp.bijectors.Sigmoid(
                                               low=lower, high=upper))
    kernel.variance.prior = tfp.distributions.LogNormal(loc=np.float64(-2.0),
                                                        scale=np.float64(1.0))

    randomize_hyperparameters(kernel)

    npt.assert_raises(AssertionError, npt.assert_allclose, 1.0,
                      kernel.variance)
    npt.assert_array_equal(dim, kernel.lengthscales.shape)
    npt.assert_raises(AssertionError, npt.assert_allclose, [0.2] * dim,
                      kernel.lengthscales)
示例#5
0
def test_randomize_hyperparameters_samples_from_constraints_when_given_prior_and_constraint(
    dim: int, ) -> None:
    kernel = gpflow.kernels.RBF(variance=1.0, lengthscales=[0.2] * dim)
    upper = tf.cast([0.5] * dim, dtype=tf.float64)

    lower = upper / 100
    kernel.lengthscales = gpflow.Parameter(kernel.lengthscales,
                                           transform=tfp.bijectors.Sigmoid(
                                               low=lower, high=upper))
    kernel.lengthscales.prior = tfp.distributions.Uniform(low=10.0, high=100.0)

    kernel.variance.prior = tfp.distributions.LogNormal(loc=np.float64(-2.0),
                                                        scale=np.float64(1.0))

    randomize_hyperparameters(kernel)

    npt.assert_array_less(kernel.lengthscales, [0.5] * dim)
    npt.assert_raises(AssertionError, npt.assert_allclose, [0.2] * dim,
                      kernel.lengthscales)