def __init__(self, label_map, max_size, polarity, opinion_offset,
              opinion_direction):
     #label map is a dict
     #max_size is the max length of the sentence in train valid and test dataset
     super().__init__()
     self.labels = ['x'] * len(label_map)
     self.label2id = label_map
     for key in self.label2id:
         self.labels[self.label2id[key]] = key
     self.MAX_OPINION_OFFSET = opinion_offset
     self.OPINION_DIRECTION = opinion_direction
     self.POLARITY = polarity
     NetworkIDMapper.set_capacity(
         np.asarray([
             max_size, 10, self.POLARITY, self.OPINION_DIRECTION,
             self.MAX_OPINION_OFFSET, self.MAX_OPINION_OFFSET, 3
         ],
                    dtype=np.int64))
     #pos, label_id, opinion_direction, opinion_start, opinion_end, node_type
     self._all_nodes = None
     self._all_children = None
     self._max_size = max_size
     print('The max size: ', self._max_size)
     print("Building generic network..")
     self.build_generic_network()
 def to_node(self, pos, label_id, target_sentiment, target_dir, target_s,
             target_e, node_type):
     return NetworkIDMapper.to_hybrid_node_ID(
         np.asarray([
             pos, label_id, target_sentiment, target_dir, target_s,
             target_e, node_type
         ]))
 def to_node(self, pos, label_id, opinion_sentiment, opinion_dir, opinion_s,
             opinion_e, node_type):  #TODO RESHAPE ARRAY
     return NetworkIDMapper.to_hybrid_node_ID(
         np.asarray([
             pos, label_id, opinion_sentiment, opinion_dir, opinion_s,
             opinion_e, node_type
         ]))
        def check_link_validity(self, parent, children):
            for child in children:
                if child < 0:
                    continue

                if child >= parent:
                    eprint(NetworkIDMapper.to_hybrid_node_array(parent))
                    eprint(NetworkIDMapper.to_hybrid_node_array(child))
                    eprint()
                    raise Exception(
                        "In an edge, the parent needs to have larger node ID in order to have a proper schedule for inference. Violation: ",
                        parent, "\t", children)

            self.check_node_validity(parent)

            for child in children:
                if child < 0:
                    continue

                self.check_node_validity(child)
 def __init__(self,
              network_id,
              inst,
              nodes,
              children,
              node_count,
              param,
              compiler,
              num_stage=-1,
              num_row=-1,
              num_hyperedge=-1,
              staged_nodes=None):
     super().__init__(network_id, inst, param, node_count, num_stage,
                      num_row, num_hyperedge, staged_nodes)
     self.nodes = nodes
     self.children = children
     # self.num_stage = num_stage
     # self.num_row = num_row
     self.nodeid2arr = [None] * self.size
     for k in range(len(self.nodeid2arr)):
         node_long = self.get_node(k)
         self.nodeid2arr[k] = NetworkIDMapper.to_hybrid_node_array(
             node_long)
 def get_node_array(self, k):
     node = self.get_node(k)
     return NetworkIDMapper.to_hybrid_node_array(node)
示例#7
0
    def visualize(self, network: TensorTableLookupNetwork, input: list):

        self.input = input
        G = self.G

        label_dict = {}
        for node in network.nodes:
            node_arr = NetworkIDMapper.to_hybrid_node_array(node)
            node_arr = tuple(node_arr)
            G.add_node(node_arr, pos=self.nodearr2coord(node_arr))
            label_dict[node_arr] = self.nodearr2label(node_arr)

        color_values = [self.nodearr2color(node_arr) for node_arr in G.nodes()]

        for stage_idx in range(network.num_stage):

            children_list_k = network.get_children(
                stage_idx
            )  ## numpy type,  num_row[stage_idx] x num_hyper_edge x 2

            for idx in range(len(children_list_k)):
                node_id = network.staged_nodes[stage_idx][idx]
                node_arr = network.get_node_array(node_id)
                node_arr = tuple(node_arr)

                for children_k_index in range(len(children_list_k[idx])):
                    children_k = children_list_k[idx][children_k_index]
                    for child_k in children_k:
                        if child_k < network.size:
                            child_k_arr = network.get_node_array(child_k)
                            child_k_arr = tuple(child_k_arr)
                            G.add_edge(node_arr, child_k_arr)

        nx.draw(G,
                nx.get_node_attributes(G, 'pos'),
                labels=label_dict,
                with_labels=True,
                node_color=color_values,
                font_size=self.font_size)  #, node_size = 60
        plt.show()


# def test():
#     G = nx.Graph()
#     # G.add_edges_from(
#     #     [('A', 'B'), ('A', 'C'), ('D', 'B'), ('E', 'C'), ('E', 'F'),
#     #      ('B', 'H'), ('B', 'G'), ('B', 'F'), ('C', 'G')])
#     #
#     # val_map = {'A': 1.0,
#     #            'D': 0.5714285714285714,
#     #            'H': 0.0}
#     #
#     # values = [val_map.get(node, 0.25) for node in G.nodes()]
#     #
#     # nx.draw(G, cmap = plt.get_cmap('jet'), node_color = values)
#     # plt.show()
#
#     def map_arr2color(node_arr):
#         return node_arr[0] / 4.0
#
#     def map_arr2label(node_arr):
#         return str(node_arr[1]) + '----' + str(node_arr[0])
#
#     def map_arr2coord(node_arr):
#         return (node_arr[0], node_arr[1])
#
#     nodes = [(0,0), (1,5), (1,3), (3,1)]
#
#     labeldict = {}
#
#     for node in nodes:
#         G.add_node(node, pos = map_arr2coord(node))
#         labeldict[node] = map_arr2label(node)
#
#
#     G.add_edge(nodes[0], nodes[1])
#
#
#     color_values = [ map_arr2color(node) for node in G.nodes()]
#
#
#     nx.draw(G, nx.get_node_attributes(G, 'pos'), labels=labeldict, with_labels=True, node_color = color_values)
#     plt.show()

#test()
 def check_node_validity(self, node):
     if node not in self._children_tmp:
         raise Exception("Node not found:",
                         NetworkIDMapper.to_hybrid_node_array(node))