示例#1
0
文件: calc_pyed.py 项目: TRIQS/tprf
def make_calc(beta=2.0, h_field=0.0):
    
    # ------------------------------------------------------------------
    # -- Hubbard atom with two bath sites, Hamiltonian

    p = ParameterCollection(
        beta = beta,
        h_field = h_field,
        U = 5.0,
        ntau = 40,
        niw = 15,
        )

    p.mu = 0.5*p.U
    
    # ------------------------------------------------------------------

    print('--> Solving SIAM with parameters')
    print(p)
    
    # ------------------------------------------------------------------

    up, do = 'up', 'dn'
    docc = c_dag(up,0) * c(up,0) * c_dag(do,0) * c(do,0)
    mA = c_dag(up,0) * c(up,0) - c_dag(do,0) * c(do,0)
    nA = c_dag(up,0) * c(up,0) + c_dag(do,0) * c(do,0)

    p.H = -p.mu * nA + p.U * docc + p.h_field * mA
    
    # ------------------------------------------------------------------

    fundamental_operators = [c(up,0), c(do,0)]
    
    ed = TriqsExactDiagonalization(p.H, fundamental_operators, p.beta)

    g_tau = GfImTime(beta=beta, statistic='Fermion', n_points=40, indices=[0])
    g_iw = GfImFreq(beta=beta, statistic='Fermion', n_points=10, indices=[0])

    p.G_tau = BlockGf(name_list=[up,do], block_list=[g_tau]*2, make_copies=True)
    p.G_iw = BlockGf(name_list=[up,do], block_list=[g_iw]*2, make_copies=True)
    
    ed.set_g2_tau(p.G_tau[up], c(up,0), c_dag(up,0))
    ed.set_g2_tau(p.G_tau[do], c(do,0), c_dag(do,0))

    ed.set_g2_iwn(p.G_iw[up], c(up,0), c_dag(up,0))
    ed.set_g2_iwn(p.G_iw[do], c(do,0), c_dag(do,0))

    p.magnetization = ed.get_expectation_value(0.5 * mA)
    p.magnetization2 = ed.get_expectation_value(0.25 * mA * mA)
    
    # ------------------------------------------------------------------
    # -- Store to hdf5
    
    filename = 'data_pyed_h_field_%4.4f.h5' % h_field
    with HDFArchive(filename,'w') as res:
        res['p'] = p
示例#2
0
        V2 * (c_dag(up,0)*c(up,2) + c_dag(up,2)*c(up,0) + \
              c_dag(do,0)*c(do,2) + c_dag(do,2)*c(do,0) )

    # ------------------------------------------------------------------
    # -- Exact diagonalization

    fundamental_operators = [
        c(up,0), c(do,0), c(up,1), c(do,1), c(up,2), c(do,2)]

    ed = TriqsExactDiagonalization(H, fundamental_operators, beta)

    # ------------------------------------------------------------------
    # -- Single-particle Green's functions

    g_tau = GfImTime(name=r'$g$', beta=beta,
                     statistic='Fermion', n_points=50,
                     target_shape=(1,1))

    g_iwn = GfImFreq(name='$g$', beta=beta,
                     statistic='Fermion', n_points=10,
                     target_shape=(1,1))

    ed.set_g2_tau(g_tau[0,0], c(up,0), c_dag(up,0))
    ed.set_g2_iwn(g_iwn[0,0], c(up,0), c_dag(up,0))

    # ------------------------------------------------------------------
    # -- Two particle Green's functions

    ntau = 20
    imtime = MeshImTime(beta, 'Fermion', ntau)
    prodmesh = MeshProduct(imtime, imtime, imtime)
示例#3
0
文件: bracket.py 项目: DerWeh/triqs
2. Linear interpolation for higher order tau greens function

g4_tau(t1, t2, t3)

"""

import itertools
import numpy as np
from triqs.gf import Gf, GfImTime, MeshImTime, MeshProduct

ntau = 10
beta = 1.2345

g_tau = GfImTime(name='g_tau',
                 beta=beta,
                 statistic='Fermion',
                 n_points=ntau,
                 indices=[1])

tau = np.array([tau.value for tau in g_tau.mesh])
g_ref = np.exp(-beta * tau)
g_tau.data[:, 0, 0] = np.exp(-beta * tau)

for tau in g_tau.mesh:
    g_tau[tau] = np.exp(-beta * tau)

for idx, tau in enumerate(g_tau.mesh):

    # comparison does not work at beta since the evaluation g_tau() wraps..
    if idx == len(g_tau.mesh) - 1: break
示例#4
0
def test_two_particle_greens_function():

    # ------------------------------------------------------------------
    # -- Hubbard atom with two bath sites, Hamiltonian

    beta = 2.0
    V1 = 2.0
    V2 = 5.0
    epsilon1 = 0.00
    epsilon2 = 4.00
    mu = 2.0
    U = 0.0

    up, do = 0, 1
    docc = c_dag(up, 0) * c(up, 0) * c_dag(do, 0) * c(do, 0)
    nA = c_dag(up, 0) * c(up, 0) + c_dag(do, 0) * c(do, 0)
    nB = c_dag(up, 1) * c(up, 1) + c_dag(do, 1) * c(do, 1)
    nC = c_dag(up, 2) * c(up, 2) + c_dag(do, 2) * c(do, 2)

    H = -mu * nA + epsilon1 * nB + epsilon2 * nC + U * docc + \
        V1 * (c_dag(up, 0) * c(up, 1) + c_dag(up, 1) * c(up, 0) +
              c_dag(do, 0) * c(do, 1) + c_dag(do, 1) * c(do, 0)) + \
        V2 * (c_dag(up, 0) * c(up, 2) + c_dag(up, 2) * c(up, 0) +
              c_dag(do, 0) * c(do, 2) + c_dag(do, 2) * c(do, 0))

    # ------------------------------------------------------------------
    # -- Exact diagonalization

    fundamental_operators = [
        c(up, 0), c(do, 0),
        c(up, 1), c(do, 1),
        c(up, 2), c(do, 2)
    ]

    ed = TriqsExactDiagonalization(H, fundamental_operators, beta)

    # ------------------------------------------------------------------
    # -- single particle Green's functions

    g_tau = GfImTime(name=r'$g$',
                     beta=beta,
                     statistic='Fermion',
                     n_points=100,
                     target_shape=(1, 1))

    ed.set_g2_tau(g_tau[0, 0], c(up, 0), c_dag(up, 0))

    # ------------------------------------------------------------------
    # -- Two particle Green's functions

    ntau = 10
    imtime = MeshImTime(beta, 'Fermion', ntau)
    prodmesh = MeshProduct(imtime, imtime, imtime)

    g40_tau = Gf(name='g40_tau', mesh=prodmesh, target_shape=(1, 1, 1, 1))
    g4_tau = Gf(name='g4_tau', mesh=prodmesh, target_shape=(1, 1, 1, 1))

    ed.set_g40_tau_matrix(g40_tau, g_tau)
    ed.set_g4_tau(g4_tau[0, 0, 0, 0], c(up, 0), c_dag(up, 0), c(up, 0),
                  c_dag(up, 0))

    # ------------------------------------------------------------------
    # -- compare

    zero_outer_planes_and_equal_times(g4_tau)
    zero_outer_planes_and_equal_times(g40_tau)
    np.testing.assert_array_almost_equal(g4_tau.data, g40_tau.data)
示例#5
0
def test_cf_G_tau_and_G_iw_nonint(verbose=False):

    beta = 3.22
    eps = 1.234

    niw = 64
    ntau = 2 * niw + 1

    H = eps * c_dag(0, 0) * c(0, 0)

    fundamental_operators = [c(0, 0)]

    ed = TriqsExactDiagonalization(H, fundamental_operators, beta)

    # ------------------------------------------------------------------
    # -- Single-particle Green's functions

    G_tau = GfImTime(beta=beta,
                     statistic='Fermion',
                     n_points=ntau,
                     target_shape=(1, 1))
    G_iw = GfImFreq(beta=beta,
                    statistic='Fermion',
                    n_points=niw,
                    target_shape=(1, 1))

    G_iw << inverse(iOmega_n - eps)
    G_tau << Fourier(G_iw)

    G_tau_ed = GfImTime(beta=beta,
                        statistic='Fermion',
                        n_points=ntau,
                        target_shape=(1, 1))
    G_iw_ed = GfImFreq(beta=beta,
                       statistic='Fermion',
                       n_points=niw,
                       target_shape=(1, 1))

    ed.set_g2_tau(G_tau_ed[0, 0], c(0, 0), c_dag(0, 0))
    ed.set_g2_iwn(G_iw_ed[0, 0], c(0, 0), c_dag(0, 0))

    # ------------------------------------------------------------------
    # -- Compare gfs

    from triqs.utility.comparison_tests import assert_gfs_are_close

    assert_gfs_are_close(G_tau, G_tau_ed)
    assert_gfs_are_close(G_iw, G_iw_ed)

    # ------------------------------------------------------------------
    # -- Plotting

    if verbose:
        from triqs.plot.mpl_interface import oplot, plt
        subp = [3, 1, 1]
        plt.subplot(*subp)
        subp[-1] += 1
        oplot(G_tau.real)
        oplot(G_tau_ed.real)

        plt.subplot(*subp)
        subp[-1] += 1
        diff = G_tau - G_tau_ed
        oplot(diff.real)
        oplot(diff.imag)

        plt.subplot(*subp)
        subp[-1] += 1
        oplot(G_iw)
        oplot(G_iw_ed)

        plt.show()
示例#6
0
文件: calc.py 项目: hmenke/pyed
    # -- Exact diagonalization

    fundamental_operators = [
        c(up, 0), c(do, 0),
        c(up, 1), c(do, 1),
        c(up, 2), c(do, 2)
    ]

    ed = TriqsExactDiagonalization(H, fundamental_operators, beta)

    # ------------------------------------------------------------------
    # -- Single-particle Green's functions

    g_tau = GfImTime(name=r'$g$',
                     beta=beta,
                     statistic='Fermion',
                     n_points=500,
                     indices=['A', 'B'])

    for (i1, s1), (i2, s2) in itertools.product([('A', up), ('B', do)],
                                                repeat=2):
        print(i1, s1, i2, s2)
        ed.set_g2_tau(g_tau[i1, i2], c(s1, 0), c_dag(s2, 0))

    # ------------------------------------------------------------------
    # -- Store to hdf5

    with HDFArchive('data_ed.h5', 'w') as res:
        res['tot'] = g_tau

# ----------------------------------------------------------------------