示例#1
0
 def init_fn(worker_id):
     set_seed(worker_id + self.cntr)
示例#2
0
    def __init__(self,
                 config=None,
                 name=None,
                 n_epochs=None,
                 seed=None,
                 base_dir=None,
                 globs=None,
                 resume=None,
                 ignore_resume_config=False,
                 resume_save_types=("model", "optimizer", "simple", "th_vars",
                                    "results"),
                 resume_reset_epochs=True,
                 parse_sys_argv=False,
                 parse_config_sys_argv=True,
                 checkpoint_to_cpu=True,
                 safe_checkpoint_every_epoch=1,
                 use_visdomlogger=True,
                 visdomlogger_kwargs=None,
                 visdomlogger_c_freq=1,
                 use_explogger=True,
                 explogger_kwargs=None,
                 explogger_c_freq=100,
                 use_telegrammessagelogger=False,
                 telegrammessagelogger_kwargs=None,
                 telegrammessagelogger_c_freq=1000,
                 append_rnd_to_name=False):

        # super(PytorchExperiment, self).__init__()
        Experiment.__init__(self)

        if parse_sys_argv:
            config_path, resume_path = get_vars_from_sys_argv()
            if config_path:
                config = config_path
            if resume_path:
                resume = resume_path

        self._config_raw = None
        if isinstance(config, str):
            self._config_raw = Config(file_=config,
                                      update_from_argv=parse_config_sys_argv)
        elif isinstance(config, Config):
            self._config_raw = Config(config=config,
                                      update_from_argv=parse_config_sys_argv)
        elif isinstance(config, dict):
            self._config_raw = Config(config=config,
                                      update_from_argv=parse_config_sys_argv)
        else:
            self._config_raw = Config(update_from_argv=parse_config_sys_argv)

        self.n_epochs = n_epochs
        if 'n_epochs' in self._config_raw:
            self.n_epochs = self._config_raw["n_epochs"]
        if self.n_epochs is None:
            self.n_epochs = 0

        self._seed = seed
        if 'seed' in self._config_raw:
            self._seed = self._config_raw.seed
        if self._seed is None:
            random_data = os.urandom(4)
            seed = int.from_bytes(random_data, byteorder="big")
            self._config_raw.seed = seed
            self._seed = seed

        self.exp_name = name
        if 'name' in self._config_raw:
            self.exp_name = self._config_raw["name"]
        if append_rnd_to_name:
            rnd_str = ''.join(
                random.choice(string.ascii_letters + string.digits)
                for _ in range(5))
            self.exp_name += "_" + rnd_str

        if 'base_dir' in self._config_raw:
            base_dir = self._config_raw["base_dir"]

        self._checkpoint_to_cpu = checkpoint_to_cpu
        self._safe_checkpoint_every_epoch = safe_checkpoint_every_epoch

        self.results = dict()

        # Init loggers
        logger_list = []
        self.vlog = None
        if use_visdomlogger:
            if visdomlogger_kwargs is None:
                visdomlogger_kwargs = {}
            self.vlog = PytorchVisdomLogger(name=self.exp_name,
                                            **visdomlogger_kwargs)
            if visdomlogger_c_freq is not None and visdomlogger_c_freq > 0:
                logger_list.append((self.vlog, visdomlogger_c_freq))
        self.elog = None
        if use_explogger:
            if explogger_kwargs is None:
                explogger_kwargs = {}
            self.elog = PytorchExperimentLogger(base_dir=base_dir,
                                                experiment_name=self.exp_name,
                                                **explogger_kwargs)
            if explogger_c_freq is not None and explogger_c_freq > 0:
                logger_list.append((self.elog, explogger_c_freq))

            # Set results log dict to the right path
            self.results = ResultLogDict("results-log.json",
                                         base_dir=self.elog.result_dir)
        self.tlog = None
        if use_telegrammessagelogger:
            if telegrammessagelogger_kwargs is None:
                telegrammessagelogger_kwargs = {}
            self.tlog = TelegramMessageLogger(**telegrammessagelogger_kwargs,
                                              exp_name=self.exp_name)
            if telegrammessagelogger_c_freq is not None and telegrammessagelogger_c_freq > 0:
                logger_list.append((self.tlog, telegrammessagelogger_c_freq))

        self.clog = CombinedLogger(*logger_list)

        set_seed(self._seed)

        # Do the resume stuff
        self._resume_path = None
        self._resume_save_types = resume_save_types
        self._ignore_resume_config = ignore_resume_config
        self._resume_reset_epochs = resume_reset_epochs
        if resume is not None:
            if isinstance(resume, str):
                if resume == "last":
                    self._resume_path = os.path.join(
                        base_dir,
                        sorted(os.listdir(base_dir))[-1])
                else:
                    self._resume_path = resume
            elif isinstance(resume, PytorchExperiment):
                self._resume_path = resume.elog.base_dir

        if self._resume_path is not None and not self._ignore_resume_config:
            self._config_raw.update(Config(file_=os.path.join(
                self._resume_path, "config", "config.json")),
                                    ignore=list(
                                        map(lambda x: re.sub("^-+", "", x),
                                            sys.argv)))

        # self.elog.save_config(self.config, "config_pre")
        if globs is not None:
            zip_name = os.path.join(self.elog.save_dir, "sources.zip")
            SourcePacker.zip_sources(globs, zip_name)

        # Init objects in config
        self.config = Config.init_objects(self._config_raw)

        atexit.register(self.at_exit_func)
def model_run(patch_size, batch_size, odd_class, z, seed=123, log_var_std=0, n_epochs=5,
              model_h_size=(16, 32, 64, 256), exp_name="exp", folder_name="exp"):
    set_seed(seed)

    config = Config(
        patch_size=patch_size, batch_size=batch_size, odd_class=odd_class, z=z, seed=seed, log_var_std=log_var_std,
        n_epochs=n_epochs
    )

    device = torch.device("cuda")

    datasets_common_args = {
        "batch_size": batch_size,
        "target_size": patch_size,
        "input_slice": [1, ],
        "add_noise": True,
        "mask_type": "gaussian",  # 0.0, ## TODO
        "elastic_deform": False,
        "rnd_crop": True,
        "rotate": True,
        "color_augment": True,
        "add_slices": 0,
    }

    input_shape = (
        datasets_common_args["batch_size"], 1, datasets_common_args["target_size"], datasets_common_args["target_size"])

    train_set_args = {
        "base_dir": "hcp/",
        # "num_batches": 500,
        "slice_offset": 20,
        "num_processes": 8,
    }
    test_set_normal_args = {
        "base_dir": "brats17/",
        # "num_batches": 100,
        "do_reshuffle": False,
        "mode": "val",
        "num_processes": 2,
        "slice_offset": 20,
        "label_slice": 2,
        "only_labeled_slices": False,
    }
    test_set_unormal_args = {
        "base_dir": "brats17/",
        # "num_batches": 100,
        "do_reshuffle": False,
        "mode": "val",
        "num_processes": 2,
        "slice_offset": 20,
        "label_slice": 2,
        "only_labeled_slices": True,
        "labeled_threshold": 10,
    }
    test_set_all_args = {
        "base_dir": "brats17_test/",
        # "num_batches": 50,
        "do_reshuffle": False,
        "mode": "val",
        "num_processes": 2,
        "slice_offset": 20,
        "label_slice": 2,
    }

    train_loader = BrainDataSet(**datasets_common_args, **train_set_args)
    test_loader_normal = BrainDataSet(**datasets_common_args, **test_set_normal_args)
    test_loader_abnorm = BrainDataSet(**datasets_common_args, **test_set_unormal_args)
    test_loader_all = BrainDataSet(**datasets_common_args, **test_set_all_args)

    model = VAE(input_size=input_shape[1:], h_size=model_h_size, z_dim=z).to(device)
    optimizer = optim.Adam(model.parameters(), lr=1e-4)
    lr_scheduler = StepLR(optimizer, step_size=1)

    vlog = PytorchVisdomLogger(exp_name=exp_name)
    elog = PytorchExperimentLogger(base_dir=folder_name, exp_name=exp_name)

    elog.save_config(config, "config")

    for epoch in range(1, n_epochs + 1):
        train(epoch, model, optimizer, train_loader, device, vlog, elog, log_var_std)

    kl_roc, rec_roc, loss_roc, kl_pr, rec_pr, loss_pr, test_loss = test_slice(model, test_loader_normal,
                                                                              test_loader_abnorm, device,
                                                                              vlog, elog, input_shape, batch_size,
                                                                              log_var_std)

    with open(os.path.join(elog.result_dir, "results.json"), "w") as file_:
        json.dump({
            "kl_roc": kl_roc, "rec_roc": rec_roc, "loss_roc": loss_roc,
            "kl_pr": kl_pr, "rec_pr": rec_pr, "loss_pr": loss_pr,
        }, file_, indent=4)

    elog.save_model(model, "vae")

    test_pixel(model, test_loader_all, device, vlog, elog, input_shape, batch_size, log_var_std)

    print("All done....")
示例#4
0
def model_run(scaling,
              batch_size,
              odd_class,
              z,
              resize_data: bool,
              transform_image_range: bool,
              gpu_id: int,
              seed=123,
              log_var_std=0.0,
              n_epochs=25):
    set_seed(seed)

    transformation_list = []

    if resize_data:
        size_of_image_side = 64
        transformation_list.append(
            transforms.Resize((size_of_image_side, size_of_image_side)))
    else:
        size_of_image_side = 64
        transformation_list.append(
            transforms.CenterCrop((size_of_image_side, size_of_image_side)))

    transformation_list.append(transforms.ToTensor())

    if transform_image_range:
        transformation_list.append(
            transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]))

    transform_functions = transforms.Compose(transformation_list)

    config = Config(scaling=scaling,
                    batch_size=batch_size,
                    odd_class=odd_class,
                    z=z,
                    resize_data=resize_data,
                    transform_image_range=transform_image_range,
                    seed=seed,
                    log_var_std=log_var_std,
                    n_epochs=n_epochs,
                    size_of_image_side=size_of_image_side)

    if gpu_id is not None:
        device = torch.device("cuda:{}".format(gpu_id))
    else:
        # Use cpu
        device = torch.device("cpu")

    image_size = size_of_image_side * size_of_image_side * 3
    input_shape = (batch_size, 3, size_of_image_side, size_of_image_side)

    model_h_size = (16, 32, 64, 256)

    output_activation = None

    if transform_image_range:
        output_activation = torch.nn.Tanh

    model = VAEConv(input_size=input_shape[1:],
                    h_size=model_h_size,
                    z_dim=z,
                    output_activation=output_activation).to(device)
    # model = VAE(z=z, input_size=input_size).to(device)

    optimizer = optim.Adam(model.parameters(), lr=1e-4)
    lr_scheduler = StepLR(optimizer, step_size=1)

    kwargs = {'num_workers': 0, 'pin_memory': True}

    # train_set = ConcreteCracksDataset(root_dir="/home/pdeubel/PycharmProjects/data/Concrete-Crack-Images", train=True,
    #                                   transform=transform_functions)
    #
    # test_set = ConcreteCracksDataset(root_dir="/home/pdeubel/PycharmProjects/data/Concrete-Crack-Images", train=False,
    #                                  transform=transform_functions)

    train_set = ConcreteCracksDataset(
        root_dir="/cvhci/data/construction/Concrete-Cracks",
        train=True,
        transform=transform_functions)

    test_set = ConcreteCracksDataset(
        root_dir="/cvhci/data/construction/Concrete-Cracks",
        train=False,
        transform=transform_functions)

    train_loader = torch.utils.data.DataLoader(train_set,
                                               batch_size=batch_size,
                                               shuffle=False,
                                               **kwargs)
    test_loader = torch.utils.data.DataLoader(test_set,
                                              batch_size=batch_size,
                                              shuffle=False,
                                              **kwargs)

    # test_loader_abnorm = torch.utils.data.DataLoader(test_set, sampler=test_one_set,
    #                                                  batch_size=batch_size, shuffle=False, **kwargs)

    # vlog = PytorchVisdomLogger(exp_name="vae-concrete-cracks")
    vlog = None
    elog = PytorchExperimentLogger(base_dir="logs/concrete-cracks",
                                   exp_name="concrete-cracks_vae")

    elog.save_config(config, "config")

    for epoch in range(1, n_epochs + 1):
        train(epoch, model, optimizer, train_loader, device, scaling, vlog,
              elog, log_var_std)
        elog.save_model(model, "vae_concrete_crack")

    # kl_roc, rec_roc, loss_roc, kl_pr, rec_pr, loss_pr = test(model, test_loader, device,
    #                                                          scaling, vlog, elog,
    #                                                          image_size, batch_size, log_var_std)

    # with open(os.path.join(elog.result_dir, "results.json"), "w") as file_:
    #     json.dump({
    #         "kl_roc": kl_roc, "rec_roc": rec_roc, "loss_roc": loss_roc,
    #         "kl_pr": kl_pr, "rec_pr": rec_pr, "loss_pr": loss_pr,
    #     }, file_, indent=4)

    test_loss, kl_loss, rec_loss = test(model, test_loader, device, scaling,
                                        vlog, elog, image_size, batch_size,
                                        log_var_std, size_of_image_side)

    with open(os.path.join(elog.result_dir, "results.json"), "w") as file_:
        json.dump(
            {
                "test_loss": test_loss,
                "kl_loss": kl_loss,
                "rec_loss": rec_loss
            },
            file_,
            indent=4)
示例#5
0
    def __init__(self,
                 config=None,
                 name=None,
                 n_epochs=None,
                 seed=None,
                 base_dir=None,
                 globs=None,
                 resume=None,
                 ignore_resume_config=False,
                 resume_save_types=("model", "optimizer", "simple", "th_vars",
                                    "results"),
                 resume_reset_epochs=True,
                 parse_sys_argv=False,
                 checkpoint_to_cpu=True,
                 save_checkpoint_every_epoch=1,
                 explogger_kwargs=None,
                 explogger_freq=1,
                 loggers=None,
                 append_rnd_to_name=False,
                 default_save_types=("model", "optimizer", "simple", "th_vars",
                                     "results")):

        # super(PytorchExperiment, self).__init__()
        Experiment.__init__(self)

        # check for command line inputs for config_path and resume_path,
        # will be prioritized over config and resume!
        config_path_from_argv = None
        if parse_sys_argv:
            config_path_from_argv, resume_path_from_argv = get_vars_from_sys_argv(
            )
            if resume_path_from_argv:
                resume = resume_path_from_argv

        # construct _config_raw
        if config_path_from_argv is None:
            self._config_raw = self._config_raw_from_input(
                config, name, n_epochs, seed, append_rnd_to_name)
        else:
            self._config_raw = Config(file_=config_path_from_argv)
        update_from_sys_argv(self._config_raw)

        # set a few experiment attributes
        self.n_epochs = self._config_raw["n_epochs"]
        self._seed = self._config_raw['seed']
        set_seed(self._seed)
        self.exp_name = self._config_raw["name"]
        self._checkpoint_to_cpu = checkpoint_to_cpu
        self._save_checkpoint_every_epoch = save_checkpoint_every_epoch
        self._default_save_types = ("model", "optimizer", "simple", "th_vars",
                                    "results")
        self.results = dict()

        # get base_dir from _config_raw or store there
        if base_dir is not None:
            self._config_raw["base_dir"] = base_dir
        base_dir = self._config_raw["base_dir"]

        # Construct experiment logger (automatically activated if base_dir is there)
        self.loggers = {}
        logger_list = []
        if base_dir is not None:
            if explogger_kwargs is None:
                explogger_kwargs = {}
            self.elog = PytorchExperimentLogger(base_dir=base_dir,
                                                exp_name=self.exp_name,
                                                **explogger_kwargs)
            if explogger_freq is not None and explogger_freq > 0:
                logger_list.append((self.elog, explogger_freq))
            self.results = ResultLogDict("results-log.json",
                                         base_dir=self.elog.result_dir)
        else:
            self.elog = None

        # Construct other loggers
        if loggers is not None:
            for logger_name, logger_cfg in loggers.items():
                _logger, log_freq = self._make_logger(logger_name, logger_cfg)
                self.loggers[logger_name] = _logger
                if log_freq is not None and log_freq > 0:
                    logger_list.append((_logger, log_freq))

        self.clog = CombinedLogger(*logger_list)

        # Set resume attributes and update _config_raw,
        # actual resuming is done automatically after setup in _setup_internal
        self._resume_path = None
        self._resume_save_types = resume_save_types
        self._ignore_resume_config = ignore_resume_config
        self._resume_reset_epochs = resume_reset_epochs
        if resume is not None:
            if isinstance(resume, str):
                if resume == "last":
                    if base_dir is None:
                        raise ValueError("resume='last' requires base_dir.")
                    self._resume_path = os.path.join(
                        base_dir,
                        sorted(os.listdir(base_dir))[-1])
                else:
                    self._resume_path = resume
            elif isinstance(resume, PytorchExperiment):
                self._resume_path = resume.elog.base_dir
        if self._resume_path is not None and not self._ignore_resume_config:
            self._config_raw.update(Config(file_=os.path.join(
                self._resume_path, "config", "config.json")),
                                    ignore=list(
                                        map(lambda x: re.sub("^-+", "", x),
                                            sys.argv)))

        # Save everything we need to reproduce experiment
        if globs is not None and self.elog is not None:
            zip_name = os.path.join(self.elog.save_dir, "sources.zip")
            SourcePacker.zip_sources(globs, zip_name)

        # Init objects in config
        self.config = Config.init_objects(self._config_raw)

        atexit.register(self.at_exit_func)
def model_run(scaling,
              batch_size,
              odd_class,
              z,
              seed=123,
              log_var_std=0,
              n_epochs=25):
    set_seed(seed)

    config = Config(scaling=scaling,
                    batch_size=batch_size,
                    odd_class=odd_class,
                    z=z,
                    seed=seed,
                    log_var_std=log_var_std,
                    n_epochs=n_epochs)

    image_size = 784
    input_size = image_size * scaling
    device = torch.device("cuda")

    def get_same_index(ds, label, invert=False):
        label_indices = []
        for i in range(len(ds)):
            if invert:
                if ds[i][1] != label:
                    label_indices.append(i)
            if not invert:
                if ds[i][1] == label:
                    label_indices.append(i)
        return label_indices

    kwargs = {'num_workers': 1, 'pin_memory': True}
    train_set = datasets.FashionMNIST(
        '/home/david/data/datasets/fashion_mnist',
        train=True,
        download=True,
        transform=transforms.ToTensor())
    test_set = datasets.FashionMNIST('/home/david/data/datasets/fashion_mnist',
                                     train=False,
                                     transform=transforms.ToTensor())

    train_indices_zero = get_same_index(train_set, odd_class, invert=True)
    train_zero_set = torch.utils.data.sampler.SubsetRandomSampler(
        train_indices_zero)
    test_indices_zero = get_same_index(test_set, odd_class, invert=True)
    test_zero_set = torch.utils.data.sampler.SubsetRandomSampler(
        test_indices_zero)
    test_indices_ones = get_same_index(test_set, odd_class)
    test_one_set = torch.utils.data.sampler.SubsetRandomSampler(
        test_indices_ones)

    train_loader = torch.utils.data.DataLoader(train_set,
                                               sampler=train_zero_set,
                                               batch_size=batch_size,
                                               shuffle=False,
                                               **kwargs)
    test_loader = torch.utils.data.DataLoader(test_set,
                                              sampler=test_zero_set,
                                              batch_size=batch_size,
                                              shuffle=False,
                                              **kwargs)
    test_loader_abnorm = torch.utils.data.DataLoader(test_set,
                                                     sampler=test_one_set,
                                                     batch_size=batch_size,
                                                     shuffle=False,
                                                     **kwargs)

    model = VAE(z=z, input_size=input_size).to(device)
    optimizer = optim.Adam(model.parameters(), lr=1e-3)

    vlog = PytorchVisdomLogger(exp_name="vae-fmnist")
    elog = PytorchExperimentLogger(
        base_dir="/home/david/data/logs/mnist_exp_fin",
        exp_name="fashion-mnist_vae")

    elog.save_config(config, "config")

    for epoch in range(1, n_epochs + 1):
        train(epoch, model, optimizer, train_loader, device, scaling, vlog,
              elog, log_var_std)

    kl_roc, rec_roc, loss_roc, kl_pr, rec_pr, loss_pr = test(
        model, test_loader, test_loader_abnorm, device, scaling, vlog, elog,
        image_size, batch_size, log_var_std)

    with open(os.path.join(elog.result_dir, "results.json"), "w") as file_:
        json.dump(
            {
                "kl_roc": kl_roc,
                "rec_roc": rec_roc,
                "loss_roc": loss_roc,
                "kl_pr": kl_pr,
                "rec_pr": rec_pr,
                "loss_pr": loss_pr,
            },
            file_,
            indent=4)