#decoding marks
        decode_trial_marks_all = marks.head(0)
        for i in range(len(starttimes[decode])):
            decode_trial_marks = marks.loc[
                (marks.index.get_level_values('time') <= endtimes[decode][i])
                & (marks.index.get_level_values('time') >= starttimes[decode]
                   [i])]
            decode_trial_marks_all = decode_trial_marks_all.append(
                decode_trial_marks)
        print('Decoding marks: ', decode_trial_marks_all.shape)
        print('Decoding marks: ',
              decode_trial_marks_all.shape,
              file=open("/data2/mcoulter/1d_decoder_log.txt", "a"))

        # filter for large negative marks
        encode_trial_marks_all_non_negative = trodes2SS.threshold_marks_negative(
            encode_trial_marks_all, negthresh=-999)
        decode_trial_marks_all_non_negative = trodes2SS.threshold_marks_negative(
            decode_trial_marks_all, negthresh=-999)
        print('Original encode length: ', encode_trial_marks_all.shape)
        print('Original encode length: ',
              encode_trial_marks_all.shape,
              file=open("/data2/mcoulter/1d_decoder_log.txt", "a"))
        print('Encoding marks non-negative filter: ',
              encode_trial_marks_all_non_negative.shape)
        print('Encoding marks non-negative filter: ',
              encode_trial_marks_all_non_negative.shape,
              file=open("/data2/mcoulter/1d_decoder_log.txt", "a"))
        print('Original decode length: ', encode_trial_marks_all.shape)
        print('Original decode length: ',
              encode_trial_marks_all.shape,
              file=open("/data2/mcoulter/1d_decoder_log.txt", "a"))
def main(path_base_rawdata, rat_name, path_arm_nodes, path_base_analysis,
         shift_amt, path_out):
    # set log file name
    #log_file = '/p/lustre1/coulter5/remy/1d_decoder_log.txt'
    print(datetime.now())
    today = str(date.today())
    #print(datetime.now(), file=open(log_file,"a"))

    # set path to folders where spykshrk core scripts live
    #path_main = '/usr/workspace/wsb/coulter5/spykshrk_realtime'
    #os.chdir(path_main)

    #cell 2
    # Import data

    # Define path bases
    #path_base_rawdata = '/p/lustre1/coulter5/remy/'

    # Define parameters
    # for epochs we want 2 and 4 for each day
    #shifts = [0, .10, .15, .20]
    #shifts = [0]
    #for shift_amt in shifts:
    #rat_name = 'remy'
    print(rat_name)
    #print(rat_name, file=open(log_file,"a"))

    directory_temp = path_base_rawdata + rat_name + '/'
    day_dictionary = {
        'remy': [20],
        'gus': [28],
        'bernard': [23],
        'fievel': [19]
    }
    epoch_dictionary = {'remy': [2], 'gus': [4], 'bernard': [4], 'fievel': [4]}
    tetrodes_dictionary = {
        'remy': [
            4, 6, 9, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 25,
            26, 28, 29, 30
        ],  # 4,6,9,10,11,12,13,14,15,17,19,20,21,22,23,24,25,26,28,29,30
        'gus': [
            6, 7, 8, 9, 10, 11, 12, 17, 18, 19, 20, 21, 24, 25, 26, 27, 30
        ],  # list(range(6,13)) + list(range(17,22)) + list(range(24,28)) + [30]
        'bernard': [
            1, 2, 3, 4, 5, 7, 8, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21,
            22, 23, 24, 25, 26, 27, 28, 29
        ],
        'fievel': [
            1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22,
            23, 24, 25, 27, 28, 29
        ]
    }
    #tetrodes_dictionary = {'remy': [4], # 4,6,9,10,11,12,13,14,15,17,19,20,21,22,23,24,25,26,28,29,30
    #                       'gus': [6], # list(range(6,13)) + list(range(17,22)) + list(range(24,28)) + [30]
    #                       'bernard': [1],
    #                       'fievel': [1]}

    # Maze information
    #os.chdir('/usr/workspace/wsb/coulter5/spykshrk_realtime/')
    #maze_coordinates = scipy.io.loadmat('set_arm_nodes.mat',variable_names = 'linearcoord_NEW')
    # new maze coordinates with only one segment for box
    maze_coordinates = scipy.io.loadmat(os.path.join(path_arm_nodes,
                                                     'set_arm_nodes.mat'),
                                        variable_names='linearcoord_one_box')

    print('Lodaing raw data! ' + str(rat_name) + ' Day ' +
          str(day_dictionary[rat_name]) + ' Epoch ' +
          str(epoch_dictionary[rat_name]))
    #print('Lodaing raw data! '+str(rat_name)+' Day '+str(day_dictionary[rat_name])+' Epoch '+str(epoch_dictionary[rat_name]), file=open("/data2/mcoulter/1d_decoder_log.txt","a"))

    datasrc = TrodesImport(directory_temp, rat_name, day_dictionary[rat_name],
                           epoch_dictionary[rat_name],
                           tetrodes_dictionary[rat_name])
    # Import marks
    marks = datasrc.import_marks()
    # # os.chdir('/data2/jguidera/data/')
    # # np.load('marks.npy')

    # add print lines to show number of marks on each tetrode
    #print('Marks on tetrode 4: ', marks.xs(4,level='elec_grp_id').shape)
    #print('Marks on tetrode 4: ', marks.xs(4,level='elec_grp_id').shape, file=open("/data2/mcoulter/1d_decoder_log.txt","a"))
    #print('Marks on tetrode 28: ', marks.xs(28,level='elec_grp_id').shape)
    #print('Marks on tetrode 28: ', marks.xs(28,level='elec_grp_id').shape, file=open("/data2/mcoulter/1d_decoder_log.txt","a"))
    #print('Marks on tetrode 30: ', marks.xs(30,level='elec_grp_id').shape)
    #print('Marks on tetrode 30: ', marks.xs(30,level='elec_grp_id').shape, file=open("/data2/mcoulter/1d_decoder_log.txt","a"))

    # Import position #? concerned about use of sampling rate in the definition for position
    # Temporary small definition of encoding settings-- need 'arm_coordinates' to use datasrc.import_pos
    encode_settings = AttrDict({'arm_coordinates': [[0, 0]]})
    # Import position (#? concerned about use of sampling rate in the definition for position)
    pos = datasrc.import_pos(encode_settings, xy='x')
    posY = datasrc.import_pos(encode_settings, xy='y')

    # Import ripples
    rips = datasrc.import_rips(pos, velthresh=4)

    # Define path bases
    path_base_dayepoch = 'day' + str(
        day_dictionary[rat_name][0]) + '_epoch' + str(
            epoch_dictionary[rat_name][0])
    #path_base_analysis = '/p/lustre1/coulter5/remy/maze_info/'

    #cell 3
    #filter ripples for velocity < 4
    #re-shape ripples input table into format for get_irregular_resample
    rips['timestamp'] = rips['starttime']
    rips['time'] = rips['starttime']
    rips.timestamp = rips.timestamp * 30000
    rips['timestamp'] = rips['timestamp'].astype(int)
    rips.reset_index(level=['event'], inplace=True)
    rips.columns = [
        'event', 'starttime', 'endtime', 'maxthresh', 'timestamp', 'time'
    ]
    rips.set_index(['timestamp', 'time'], drop=True, append=True, inplace=True)

    #filter for velocity < 4 with get_irregular_resample
    linflat_obj = pos.get_mapped_single_axis()
    linflat_ripindex = linflat_obj.get_irregular_resampled(rips)
    linflat_ripindex_encode_velthresh = linflat_ripindex.query(
        'linvel_flat < 4')

    #re-shape to RippleTimes format for plotting
    rips_vel_filt = rips.loc[linflat_ripindex_encode_velthresh.index]
    rips_vel_filt.reset_index(level=['timestamp', 'time'], inplace=True)
    rips_vel_filt.set_index(['event'], drop=True, append=True, inplace=True)
    rips_vel_filtered = RippleTimes.create_default(rips_vel_filt, 1)

    print('rips when animal velocity <= 4: ' +
          str(linflat_ripindex_encode_velthresh.shape[0]))
    #print('rips when animal velocity <= 4: '+str(linflat_ripindex_encode_velthresh.shape[0]), file=open(log_file,"a"))

    #cell 4
    # dont run encoding or decdoing subset cells for the crossvalidation runs
    # the marks filtering happens right before running encoder

    #cell 6
    # linearize the whole epoch - should only have to do this once.

    speed_threshold_save = 0

    #new position variables for whole epoch
    pos_all_linear = pos
    posY1 = posY

    #linear_start = pos.index.get_level_values('time')[encode_subset_start]
    #linear_end = pos.index.get_level_values('time')[encode_subset_end]

    # Define path base
    #path_base_timewindow = str(int(round(linear_start))) + 'to' + str(int(round(linear_end))) + 'sec'
    path_base_timewindow = 'whole_epoch_v3'
    path_base_foranalysisofonesessionepoch = path_base_analysis + rat_name + '/' + path_base_dayepoch + '/' + path_base_timewindow

    # Change to directory with saved linearization result
    # Define folder for saved linearization result
    linearization_output_save_path = path_base_foranalysisofonesessionepoch + '/linearization_output/'
    linearization_output_save_path
    # Check if it exists, make if it doesn't
    directory_path = linearization_output_save_path
    if not os.path.exists(directory_path):
        os.mkdir(directory_path)
    #change_to_directory_make_if_nonexistent(directory_path)

    # Define name of linearization result
    linearization_output1_save_filename = os.path.join(
        directory_path, 'linearization_' + path_base_timewindow + '_speed' +
        str(speed_threshold_save) + '_linear_distance_arm_shift' + '.npy')
    linearization_output2_save_filename = os.path.join(
        directory_path, 'linearization_' + path_base_timewindow + '_speed' +
        str(speed_threshold_save) + '_track_segment_id_use' + '.npy')

    # Load linearization
    print('Linearization result exists. Loading it.')
    #print("Linearization result exists. Loading it.", file=open(log_file,"a"))
    linear_distance_arm_shift = np.load(linearization_output1_save_filename)
    track_segment_id_use = np.load(linearization_output2_save_filename)
    #pos_subset['linpos_flat'] = linear_distance_arm_shift[(encode_subset_start-encode_subset_start):(encode_subset_end-encode_subset_start+1)]
    #whole_epoch
    pos_all_linear['linpos_flat'] = linear_distance_arm_shift

    #cell 7
    # Define position bins #!!! HARD CODE: ASSUMES POSITION BIN OF WIDTH 1 !!!
    # need to use the indices of the encoding time subset in this cell

    # Initialize variables
    tracksegment_positionvalues_min_and_max = []
    tracksegment_positionvalues_for_bin_edges = []

    # Find min and max position for each track segment
    #tracksegments_temp = np.unique(track_segment_id_use[encode_subset_start:(encode_subset_end+1)])
    #whole epoch
    tracksegments_temp = np.unique(
        track_segment_id_use[0:len(linear_distance_arm_shift)])

    for t_loop in tracksegments_temp:  # for each track segment
        #indiceswewant_temp = track_segment_id_use[encode_subset_start:(encode_subset_end+1)] == t_loop
        #whole epoch
        indiceswewant_temp = track_segment_id_use[
            0:len(linear_distance_arm_shift)] == t_loop

        #tracksegment_positionvalues_temp = pos_subset.values[indiceswewant_temp,0] # second dimension of pos_subset: zero for position, 1 for velocity
        #whole epoch
        tracksegment_positionvalues_temp = pos_all_linear.values[
            indiceswewant_temp, 0]

        tracksegment_positionvalues_min_and_max.append([
            tracksegment_positionvalues_temp.min(),
            tracksegment_positionvalues_temp.max()
        ])
        # To define edges, floor mins and ceil maxes
        tracksegment_positionvalues_for_bin_edges.append([
            np.floor(tracksegment_positionvalues_temp.min()),
            np.ceil(tracksegment_positionvalues_temp.max())
        ])

    # Floor to get bins #? Is this right? Does 0 mean the bin spanning [0, 1]?
    tracksegment_positionvalues_min_and_max_floor = np.floor(
        tracksegment_positionvalues_min_and_max)

    # Find only bins in range of segments
    binswewant_temp = []
    for t_loop in tracksegment_positionvalues_min_and_max_floor:  # for each track segment
        binswewant_temp.append(
            np.ndarray.tolist(np.arange(
                t_loop[0], t_loop[1] +
                1)))  # + 1 to account for np.arange not including last index
    # Do same for edges
    edgeswewant_temp = []
    for t_loop in tracksegment_positionvalues_for_bin_edges:  # for each track segment
        edgeswewant_temp.append(
            np.ndarray.tolist(np.arange(
                t_loop[0], t_loop[1] +
                1)))  # + 1 to account for np.arange not including last index

    # Flatten (combine bins from segments)
    binswewant_temp_flat = [y for x in binswewant_temp for y in x]
    edgeswewant_temp_flat = [y for x in edgeswewant_temp for y in x]

    # Find unique elements
    arm_coords_wewant = (np.unique(binswewant_temp_flat))
    edges_wewant = (np.unique(edgeswewant_temp_flat))

    # Turn list of edges into ranges
    start_temp, end_temp = turn_array_into_ranges(edges_wewant)
    arm_coordinates_WEWANT = np.column_stack((start_temp, end_temp))
    print('Arm coordinates: ', arm_coordinates_WEWANT)
    #print('Arm coordinates: ',arm_coordinates_WEWANT, file=open(log_file,"a"))

    #cell 7.1
    # this cell speeds up encoding with larger position bins
    # try 5cm bins - do this by dividing position subset by 5 and arm coords by 5

    #pos_subset['linpos_flat'] = (pos_subset['linpos_flat'])/5
    #whole epoch
    pos_all_linear['linpos_flat'] = (pos_all_linear['linpos_flat']) / 5

    arm_coordinates_WEWANT = arm_coordinates_WEWANT / 5
    arm_coordinates_WEWANT = np.around(arm_coordinates_WEWANT)
    print('Arm coordinates: ', arm_coordinates_WEWANT)
    #print('Arm coordinates: ',arm_coordinates_WEWANT, file=open(log_file,"a"))

    #cell 8
    #define encoding settings
    #max_pos = int(round(linear_distance_arm_shift.max()) + 20)

    # if you are using 5cm position bins, use this max_pos instead
    max_pos = int(round(linear_distance_arm_shift.max() / 5) + 5)

    encode_settings = AttrDict({
        'sampling_rate':
        3e4,
        'pos_bins':
        np.arange(0, max_pos, 1),  # arm_coords_wewant
        'pos_bin_edges':
        np.arange(0, max_pos + .1, 1),  # edges_wewant, 
        'pos_bin_delta':
        1,
        # 'pos_kernel': sp.stats.norm.pdf(arm_coords_wewant, arm_coords_wewant[-1]/2, 1),
        'pos_kernel':
        sp.stats.norm.pdf(
            np.arange(0, max_pos, 1), max_pos / 2, 1
        ),  #note that the pos_kernel mean should be half of the range of positions (ie 180/90) # sp.stats.norm.pdf(np.arange(0,560,1), 280, 1),    
        'pos_kernel_std':
        1,
        'mark_kernel_std':
        int(20),
        'pos_num_bins':
        max_pos,  # len(arm_coords_wewant)
        'pos_col_names':
        [pos_col_format(ii, max_pos)
         for ii in range(max_pos)],  # or range(0,max_pos,10)
        'arm_coordinates':
        arm_coordinates_WEWANT,
        'path_trans_mat':
        path_arm_nodes
    })  # includes box, removes bins in the gaps 'arm_coordinates': [[0,max_pos]]})

    print('Encode settings: ', encode_settings)
    #print('Encode settings: ',encode_settings, file=open(log_file,"a"))

    #cell 9
    #define decode settings
    decode_settings = AttrDict({
        'trans_smooth_std': 2,
        'trans_uniform_gain': 0.0001,
        'time_bin_size': 60
    })

    print('Decode settings: ', decode_settings)
    #print('Decode settings: ',decode_settings, file=open(log_file,"a"))

    #cell 9.1 randomize trial order within epoch
    #read in trial times
    trialsname = directory_temp + rat_name + 'trials' + str(
        day_dictionary[rat_name][0]) + '.mat'
    trialsmat = scipy.io.loadmat(trialsname,
                                 squeeze_me=True,
                                 struct_as_record=False)
    starttimes = trialsmat['trials'][day_dictionary[rat_name][0] -
                                     1][epoch_dictionary[rat_name][0] -
                                        1].starttime
    starttimes = starttimes.astype(np.float64, copy=False)
    endtimes = trialsmat['trials'][day_dictionary[rat_name][0] -
                                   1][epoch_dictionary[rat_name][0] -
                                      1].endtime
    endtimes = endtimes.astype(np.float64, copy=False)
    trialsindex = np.arange(starttimes.shape[0])
    print('Number of trials: ', trialsindex.shape)
    #print('Number of trials: ',trialsindex.shape, file=open(log_file,"a"))

    # randomize trial order
    indices = np.arange(starttimes.shape[0])
    np.random.shuffle(indices)

    #fixed random order
    indices = [
        17, 92, 3, 98, 11, 78, 105, 100, 103, 37, 28, 62, 85, 59, 41, 93, 29,
        102, 6, 76, 13, 82, 18, 25, 64, 96, 20, 16, 65, 54, 12, 24, 56, 5, 74,
        73, 79, 89, 97, 70, 68, 46, 7, 40, 101, 48, 77, 63, 69, 108, 66, 15,
        91, 33, 45, 21, 51, 19, 30, 23, 72, 35, 42, 47, 95, 107, 104, 61, 43,
        60, 67, 88, 71, 14, 38, 32, 87, 57, 27, 31, 1, 2, 53, 86, 50, 49, 0,
        52, 90, 10, 44, 84, 55, 81, 106, 39, 75, 58, 9, 34, 4, 8, 26, 22, 94,
        83, 36, 80, 99
    ]

    starttimes_shuffled = starttimes[indices]
    endtimes_shuffled = endtimes[indices]
    trialsindex_shuffled = trialsindex[indices]
    print('Randomized trial order: ', trialsindex_shuffled)
    #print('Randomized trial order: ',trialsindex_shuffled, file=open(log_file,"a"))

    #to make a new position, marks and trial file with new start and end times:
    #position
    random_trial_pos_all = pos_all_linear.head(0)
    for i in range(len(starttimes_shuffled)):
        random_trial_pos = pos_all_linear.loc[
            (pos_all_linear.index.get_level_values('time') <=
             endtimes_shuffled[i]) & (pos_all_linear.index.get_level_values(
                 'time') >= starttimes_shuffled[i])]
        random_trial_pos_all = random_trial_pos_all.append(random_trial_pos)

    #marks
    random_trial_marks_all = marks.head(0)
    for i in range(len(starttimes_shuffled)):
        random_trial_marks = marks.loc[
            (marks.index.get_level_values('time') <= endtimes_shuffled[i])
            & (marks.index.get_level_values('time') >= starttimes_shuffled[i])]
        random_trial_marks_all = random_trial_marks_all.append(
            random_trial_marks)

    # filter for large negative marks and spike amplitude
    marks_random_trial_non_negative = trodes2SS.threshold_marks_negative(
        random_trial_marks_all, negthresh=-999)
    print('Original encode length: ', random_trial_marks_all.shape)
    #print('Original encode length: ',random_trial_marks_all.shape, file=open(log_file,"a"))
    print('Encoding marks non-negative filter: ',
          marks_random_trial_non_negative.shape)
    #print('Encoding marks non-negative filter: ',marks_random_trial_non_negative.shape, file=open(log_file,"a"))

    random_trial_spk_subset_sparse = trodes2SS.threshold_marks(
        marks_random_trial_non_negative, maxthresh=2000, minthresh=100)
    print('original length: ' + str(marks_random_trial_non_negative.shape[0]))
    print('after filtering: ' + str(random_trial_spk_subset_sparse.shape[0]))
    #print('original length: '+str(marks_random_trial_non_negative.shape[0]), file=open(log_file,"a"))
    #print('after filtering: '+str(random_trial_spk_subset_sparse.shape[0]), file=open(log_file,"a"))

    # velocity filter to define encoding and decoding times
    velocity_filter = 4
    print('Velocity filter: ', velocity_filter)
    #print('Velocity filter: ',velocity_filter, file=open(log_file,"a"))

    #NOTE: to try marks shift on whole trials we need to do shift first, then velocity filter for encoding and decoding marks
    # nope - cant do this, need to do velocity filter first

    # #encoding spikes
    linflat_obj = random_trial_pos_all.get_mapped_single_axis()

    #linflat_obj = pos_all_linear.get_mapped_single_axis()
    linflat_spkindex = linflat_obj.get_irregular_resampled(
        random_trial_spk_subset_sparse)
    linflat_spkindex_encode_velthresh = linflat_spkindex.query(
        'linvel_flat > @velocity_filter')

    encode_spikes_random_trial = random_trial_spk_subset_sparse.loc[
        linflat_spkindex_encode_velthresh.index]

    #encode_spikes_random_trial_random = encode_spikes_random_trial.head(0)
    #for i in range(len(starttimes_shuffled)):
    #    encode_random_spikes = encode_spikes_random_trial.loc[(encode_spikes_random_trial.index.get_level_values('time') <= endtimes_shuffled[i]) & (encode_spikes_random_trial.index.get_level_values('time') >= starttimes_shuffled[i])]
    #    encode_spikes_random_trial_random = encode_spikes_random_trial_random.append(encode_random_spikes)

    print('encoding spikes after velocity filter: ' +
          str(encode_spikes_random_trial.shape[0]))
    #print('encoding spikes after velocity filter: '+str(encode_spikes_random_trial.shape[0]), file=open(log_file,"a"))

    # #decoding spikes
    linflat_obj = random_trial_pos_all.get_mapped_single_axis()
    #linflat_obj = pos.get_mapped_single_axis()
    linflat_spkindex = linflat_obj.get_irregular_resampled(
        random_trial_spk_subset_sparse)
    linflat_spkindex_decode_velthresh = linflat_spkindex.query(
        'linvel_flat < @velocity_filter')

    decode_spikes_random_trial = random_trial_spk_subset_sparse.loc[
        linflat_spkindex_decode_velthresh.index]

    print('decoding spikes after velocity filter: ' +
          str(decode_spikes_random_trial.shape[0]))
    #print('decoding spikes after velocity filter: '+str(decode_spikes_random_trial.shape[0]), file=open(log_file,"a"))

    #filter position for velocity
    random_trial_pos_all_vel = random_trial_pos_all.loc[(
        random_trial_pos_all['linvel_flat'] > velocity_filter)]
    #random_trial_pos_all_vel = pos_all_linear.loc[(pos_all_linear['linvel_flat']>velocity_filter)]

    # cell 9.2 randomize position between arms

    # define dictionaries for arm swaps

    # dictionary to identify arm of the trial
    arm_id_dict = {
        13: 'arm1',
        14: 'arm1',
        15: 'arm1',
        16: 'arm1',
        17: 'arm1',
        18: 'arm1',
        19: 'arm1',
        20: 'arm1',
        21: 'arm1',
        22: 'arm1',
        23: 'arm1',
        24: 'arm1',
        25: 'arm1',
        26: 'arm1',
        27: 'arm1',
        29: 'arm2',
        30: 'arm2',
        31: 'arm2',
        32: 'arm2',
        33: 'arm2',
        34: 'arm2',
        35: 'arm2',
        36: 'arm2',
        37: 'arm2',
        38: 'arm2',
        39: 'arm2',
        40: 'arm2',
        41: 'arm2',
        42: 'arm2',
        43: 'arm2',
        46: 'arm3',
        47: 'arm3',
        48: 'arm3',
        49: 'arm3',
        50: 'arm3',
        51: 'arm3',
        52: 'arm3',
        53: 'arm3',
        54: 'arm3',
        55: 'arm3',
        56: 'arm3',
        57: 'arm3',
        58: 'arm3',
        59: 'arm3',
        60: 'arm3',
        64: 'arm4',
        65: 'arm4',
        66: 'arm4',
        67: 'arm4',
        68: 'arm4',
        69: 'arm4',
        70: 'arm4',
        71: 'arm4',
        72: 'arm4',
        73: 'arm4',
        74: 'arm4',
        75: 'arm4',
        76: 'arm4',
        77: 'arm4',
        81: 'arm5',
        82: 'arm5',
        83: 'arm5',
        84: 'arm5',
        85: 'arm5',
        86: 'arm5',
        87: 'arm5',
        88: 'arm5',
        89: 'arm5',
        90: 'arm5',
        91: 'arm5',
        92: 'arm5',
        93: 'arm5',
        94: 'arm5',
        97: 'arm6',
        98: 'arm6',
        99: 'arm6',
        100: 'arm6',
        101: 'arm6',
        102: 'arm6',
        103: 'arm6',
        104: 'arm6',
        105: 'arm6',
        106: 'arm6',
        107: 'arm6',
        108: 'arm6',
        109: 'arm6',
        110: 'arm6',
        113: 'arm7',
        114: 'arm7',
        115: 'arm7',
        116: 'arm7',
        117: 'arm7',
        118: 'arm7',
        119: 'arm7',
        120: 'arm7',
        121: 'arm7',
        122: 'arm7',
        123: 'arm7',
        124: 'arm7',
        125: 'arm7',
        126: 'arm7',
        127: 'arm7',
        130: 'arm8',
        131: 'arm8',
        132: 'arm8',
        133: 'arm8',
        134: 'arm8',
        135: 'arm8',
        136: 'arm8',
        137: 'arm8',
        138: 'arm8',
        139: 'arm8',
        140: 'arm8',
        141: 'arm8',
        142: 'arm8',
        143: 'arm8',
        1: 'arm0',
        2: 'arm0',
        3: 'arm0',
        4: 'arm0',
        5: 'arm0',
        6: 'arm0',
        7: 'arm0',
        8: 'arm0',
        9: 'arm0',
    }

    # dictionary for new (randomly chosen arm)
    new_arm_id_dict = {
        1: 'arm1',
        2: 'arm2',
        3: 'arm3',
        4: 'arm4',
        5: 'arm5',
        6: 'arm6',
        7: 'arm7',
        8: 'arm8'
    }
    # dictionary for start of arm
    arm_start_dict = {
        'arm0': 1,
        'arm1': 13,
        'arm2': 29,
        'arm3': 46,
        'arm4': 62,
        'arm5': 79,
        'arm6': 96,
        'arm7': 113,
        'arm8': 130
    }
    # dictionary for length of arm
    arm_length_dict = {
        'arm0': 1,
        'arm1': 26 - 13,
        'arm2': 42 - 29,
        'arm3': 58 - 46,
        'arm4': 76 - 64,
        'arm5': 93 - 81,
        'arm6': 110 - 97,
        'arm7': 126 - 114,
        'arm8': 142 - 130
    }

    import random

    arm_swap_trial_pos_all = pos_all_linear.head(0)
    arm_swap_trial_pos_all_save = pos_all_linear.head(0)
    for i in range(len(starttimes_shuffled)):
        arm_swap_trial_pos = pos_all_linear.loc[
            (pos_all_linear.index.get_level_values('time') <=
             endtimes_shuffled[i]) & (pos_all_linear.index.get_level_values(
                 'time') >= starttimes_shuffled[i])]
        #print(arm_swap_trial_pos[0:1])
        arm_id = arm_id_dict[int(arm_swap_trial_pos['linpos_flat'].max())]
        arm_start = arm_start_dict[arm_id]
        arm_length = arm_length_dict[arm_id]
        new_arm_id = new_arm_id_dict[random.randint(1, 8)]
        print('Trial: ', indices[i], ' Original arm: ', arm_id, ' New arm: ',
              new_arm_id)
        new_arm_start = arm_start_dict[new_arm_id]
        new_arm_length = arm_length_dict[new_arm_id]

        arm_swap_trial_pos.loc[
            arm_swap_trial_pos['linpos_flat'] > 13, ['linpos_flat']] = (
                ((arm_swap_trial_pos[arm_swap_trial_pos['linpos_flat'] > 13]
                  ['linpos_flat'].values - new_arm_start) *
                 (arm_length / new_arm_length)) + arm_start)

        arm_swap_trial_pos_all = arm_swap_trial_pos_all.append(
            arm_swap_trial_pos)
        arm_swap_trial_pos_all_save = arm_swap_trial_pos_all.append(
            arm_swap_trial_pos)

    # save dataframe with both shifted position

    shifted_position_file_name = os.path.join(
        path_out, rat_name + '_' + str(day_dictionary[rat_name][0]) + '_' +
        str(epoch_dictionary[rat_name][0]) +
        '_vel4_convol_new_pos_arm_shift_position_2_' + today + '.nc')
    position_shift2 = arm_swap_trial_pos_all_save.reset_index()
    position_shift3 = position_shift2.to_xarray()
    position_shift3.to_netcdf(shifted_position_file_name)
    print('Saved shifted marks to: ' + shifted_position_file_name)
    #print('Saved shifted marks to: '+shifted_marks_file_name, file=open(log_file,"a")

    offset_30Hz_time_bins = 0

    print('Shifted position shape: ', arm_swap_trial_pos_all.shape)
    #print('Shifted marks shape: ',encode_spikes_random_trial.shape, file=open(log_file,"a"))

    #cell 10
    # Run encoder
    # these time-table lines are so that we can record the time it takes for encoder to run even if notebook disconnects
    # look at the time stamps for the two files in /data2/mcoulter called time_stamp1 and time_stamp2
    print('Starting encoder')
    #print("Starting encoder", file=open(log_file,"a"))
    #time_table_data = {'age': [1, 2, 3, 4, 5]}
    #time_table = pd.DataFrame(time_table_data)
    #time_table.to_csv('/p/lustre1/coulter5/remy/time_stamp1.csv')
    time_started = datetime.now()

    #for whole epoch: linflat=pos_all_linear_vel
    #for subset: linflat=pos_subset
    encoder = OfflinePPEncoder(linflat=arm_swap_trial_pos_all,
                               dec_spk_amp=decode_spikes_random_trial,
                               encode_settings=encode_settings,
                               decode_settings=decode_settings,
                               enc_spk_amp=encode_spikes_random_trial,
                               dask_worker_memory=1e9,
                               dask_chunksize=None)

    #new output format to call results, prob_no_spike, and trans_mat for doing single tetrode encoding
    encoder_output = encoder.run_encoder()
    results = encoder_output['results']
    prob_no_spike = encoder_output['prob_no_spike']
    trans_mat = encoder_output['trans_mat']

    #results = encoder.run_encoder()

    #time_table.to_csv('/p/lustre1/coulter5/remy/time_stamp2.csv')
    time_finished = datetime.now()

    print('Enocder finished!')
    #print('Encoder started at: ',datetime.fromtimestamp(os.path.getmtime('/p/lustre1/coulter5/remy/time_stamp1.csv')).strftime('%Y-%m-%d %H:%M:%S'))
    print('Encoder started at: %s' % str(time_started))
    print('Encoder finished at: %s' % str(time_finished))
    #print("Encoder finished!", file=open(log_file,"a"))
    #print('Encoder started at: ',datetime.fromtimestamp(os.path.getmtime('/p/lustre1/coulter5/remy/time_stamp1.csv')).strftime('%Y-%m-%d %H:%M:%S'), file=open("/data2/mcoulter/1d_decoder_log.txt","a"))
    #print('Encoder finished at: ',datetime.fromtimestamp(os.path.getmtime('/p/lustre1/coulter5/remy/time_stamp2.csv')).strftime('%Y-%m-%d %H:%M:%S'), file=open("/data2/mcoulter/1d_decoder_log.txt","a"))

    #cell 11
    #make observations table from results
    # if the master script has the list of all tetrodes then this cell should be able to combine the results table from each tetrode

    tet_ids = np.unique(
        decode_spikes_random_trial.index.get_level_values('elec_grp_id'))
    observ_tet_list = []
    grp = decode_spikes_random_trial.groupby('elec_grp_id')
    for tet_ii, (tet_id, grp_spk) in enumerate(grp):
        tet_result = results[tet_ii]
        tet_result.set_index(grp_spk.index, inplace=True)
        observ_tet_list.append(tet_result)

    observ = pd.concat(observ_tet_list)
    observ_obj = SpikeObservation.create_default(
        observ.sort_index(level=['day', 'epoch', 'timestamp', 'elec_grp_id']),
        encode_settings)

    observ_obj['elec_grp_id'] = observ_obj.index.get_level_values(
        'elec_grp_id')
    observ_obj.index = observ_obj.index.droplevel('elec_grp_id')

    # add a small offset to observations table to prevent division by 0 when calculating likelihoods
    # this is currently hard-coded for 5cm position bins -> 147 total bins
    observ_obj.loc[:,
                   'x000':'x146'] = observ_obj.loc[:, 'x000':
                                                   'x146'].values + np.spacing(
                                                       1)

    #cell 11.1
    #make prob_no_spike dictionary from individual tetrodes
    # if the master script has the list of all tetrodes then this cell should be able to combine the results table from each tetrode

    #this will take in prob_no_spike from several differnt encoder runs, each for a single tetrode, the dictionaries should be named
    # 'prob_no_spike_[tet number]'
    #tet_ids = [prob_no_spike_26,prob_no_spike_28,prob_no_spike_29,prob_no_spike_30]
    #prob_no_spike_all = tet_ids[0]
    #for tet_id in tet_ids[1:]:
    #    prob_no_spike_all.update(tet_id)

    #cell 13
    # save observations
    #observ_obj._to_hdf_store('/data2/mcoulter/fievel_19_2_observations_whole_epoch.h5','/analysis',
    #                         'decode/clusterless/offline/observ_obj', 'observ_obj')
    #print('Saved observations to /data2/mcoulter/fievel_19_2_observations_whole_epoch.h5')
    #print('Saved observations to /data2/mcoulter/fievel_19_2_observations_whole_epoch.h5', file=open("/data2/mcoulter/1d_decoder_log.txt","a"))

    #cell 14
    # load previously generated observations
    # hacky but reliable way to load a dataframe stored as hdf
    # Posteriors is imported from data_containers
    #observ_obj = Posteriors._from_hdf_store('/data2/mcoulter/remy_20_4_observ_obj_0_20000.h5','/analysis',
    #                         'decode/clusterless/offline/observ_obj', 'observ_obj')

    #load prob_no_spike - this is a dictionary
    #probability_no_spike = np.load('/mnt/vortex/mcoulter/prob_no_spike.npy').item()

    #load transition matrix - this is an array
    #transition_matrix = np.load('/mnt/vortex/mcoulter/trans_mat.npy')

    #cell 15
    # Run PP decoding algorithm
    # NOTE 1-11-19 had to add spk_amp and vel to encode settings in order for decoding to run
    # what should these be set to? and why are they here now?
    time_bin_size = 60
    decode_settings = AttrDict({
        'trans_smooth_std': 2,
        'trans_uniform_gain': 0.0001,
        'time_bin_size': 60
    })

    encode_settings = AttrDict({
        'sampling_rate':
        3e4,
        'pos_bins':
        np.arange(0, max_pos, 1),  # arm_coords_wewant
        'pos_bin_edges':
        np.arange(0, max_pos + .1, 1),  # edges_wewant, 
        'pos_bin_delta':
        1,
        # 'pos_kernel': sp.stats.norm.pdf(arm_coords_wewant, arm_coords_wewant[-1]/2, 1),
        'pos_kernel':
        sp.stats.norm.pdf(
            np.arange(0, max_pos, 1), max_pos / 2, 1
        ),  #note that the pos_kernel mean should be half of the range of positions (ie 180/90) # sp.stats.norm.pdf(np.arange(0,560,1), 280, 1),    
        'pos_kernel_std':
        1,
        'mark_kernel_std':
        int(20),
        'pos_num_bins':
        max_pos,  # len(arm_coords_wewant)
        'pos_col_names': [
            pos_col_format(ii, max_pos) for ii in range(max_pos)
        ],  # [pos_col_format(int(ii), len(arm_coords_wewant)) for ii in arm_coords_wewant],
        'arm_coordinates':
        arm_coordinates_WEWANT,  # 'arm_coordinates': [[0,max_pos]]})
        'spk_amp':
        60,
        'vel':
        0
    })

    #when running the encoder and decoder at same time: trans_mat=encoder.trans_mat['flat_powered']
    #AND  prob_no_spike=encoder.prob_no_spike
    #when loading a previsouly generated observations table use: trans_mat=transition_matrix
    # AND prob_no_spike=probability_no_spike

    print('Starting decoder')
    #print("Starting decoder", file=open(log_file,"a"))
    decoder = OfflinePPDecoder(observ_obj=observ_obj,
                               trans_mat=encoder.trans_mat['flat_powered'],
                               prob_no_spike=encoder.prob_no_spike,
                               encode_settings=encode_settings,
                               decode_settings=decode_settings,
                               time_bin_size=time_bin_size,
                               all_linear_position=pos_all_linear,
                               velocity_filter=4)

    posteriors = decoder.run_decoder()
    print('Decoder finished!')
    #print('Decoder finished!', file=open(log_file,"a"))
    print('Posteriors shape: ' + str(posteriors.shape))
    #print('Posteriors shape: '+ str(posteriors.shape), file=open(log_file,"a"))

    #cell 15.1
    # reorder posteriors and position to restore original trial order (undo the randomization)

    #cell 16
    #save posteriors with hdf
    #posteriors._to_hdf_store('/data2/mcoulter/posteriors/fievel_19_2_whole_epoch.h5','/analysis',
    #                         'decode/clusterless/offline/posterior', 'learned_trans_mat')
    #print('Saved posteriors to /vortex/mcoulter/posteriors/fievel_19_2_whole_epoch.h5')
    #print('Saved posteriors to /vortex/mcoulter/posteriors/fievel_19_2_whole_epoch.h5', file=open("/data2/mcoulter/1d_decoder_log.txt","a"))

    #cell 17
    #load previously generated posteriors from hdf
    #posteriors = Posteriors._from_hdf_store('/data2/mcoulter/posteriors/remy_20_4_linearized_alltime_decode.h5','/analysis',
    #                                        'decode/clusterless/offline/posterior', 'learned_trans_mat')

    #cell 18 saving posteriors as netcdf instead of hdf
    # to export posteriors to MatLab
    # add ripple labels to posteriors and then convert posteriors to xarray then save as netcdf
    # this requires folding multiindex into posteriors dataframe first

    #needed for netcdf saving:
    marks_index_shift = 0

    posterior_file_name = os.path.join(
        path_out, rat_name + '_' + str(day_dictionary[rat_name][0]) + '_' +
        str(epoch_dictionary[rat_name][0]) +
        '_vel4_mask_convol_new_pos_yes_random_arm_shift_posteriors_2_' +
        today + '.nc')

    post1 = posteriors.apply_time_event(rips_vel_filtered,
                                        event_mask_name='ripple_grp')
    post2 = post1.reset_index()
    #post3 = post2.to_xarray()
    post3 = convert_dan_posterior_to_xarray(
        post2, tetrodes_dictionary[rat_name], velocity_filter, encode_settings,
        decode_settings, trans_mat, offset_30Hz_time_bins,
        trialsindex_shuffled, marks_index_shift)
    #print(len(post3))
    post3.to_netcdf(posterior_file_name)
    print('Saved posteriors to ' + posterior_file_name)
    #print('Saved posteriors to '+posterior_file_name, file=open(log_file,"a"))

    # to export linearized position to MatLab: again convert to xarray and then save as netcdf

    position_file_name = os.path.join(
        path_out, rat_name + '_' + str(day_dictionary[rat_name][0]) + '_' +
        str(epoch_dictionary[rat_name][0]) +
        '_vel4_mask_convol_new_pos_yes_random_arm_shift_linearposition_2_' +
        today + '.nc')

    linearized_pos1 = pos_all_linear.apply_time_event(
        rips_vel_filtered, event_mask_name='ripple_grp')
    linearized_pos2 = linearized_pos1.reset_index()
    linearized_pos3 = linearized_pos2.to_xarray()
    linearized_pos3.to_netcdf(position_file_name)
    print('Saved linearized position to ' + position_file_name)
    #print('Saved linearized position to '+position_file_name, file=open(log_file,"a"))

    # to calculate histogram of posterior max position in each time bin
    hist_bins = []
    post_hist1 = posteriors.drop(['num_spikes', 'dec_bin', 'ripple_grp'],
                                 axis=1)
    post_hist2 = post_hist1.dropna()
    post_hist3 = post_hist2.idxmax(axis=1)
    post_hist3 = post_hist3.str.replace('x', '')
    post_hist3 = post_hist3.astype(int)
    hist_bins = np.histogram(post_hist3,
                             bins=[
                                 0, 9, 13, 26, 29, 42, 46, 55, 62, 75, 79, 92,
                                 96, 109, 113, 122, 130, 142
                             ])
    print(hist_bins)

    print("End of script!")
示例#3
0
            (pos_all_linear.index.get_level_values('time') <=
             endtimes_shuffled[i]) & (pos_all_linear.index.get_level_values(
                 'time') >= starttimes_shuffled[i])]
        random_trial_pos_all = random_trial_pos_all.append(random_trial_pos)

    #marks
    random_trial_marks_all = marks.head(0)
    for i in range(len(starttimes_shuffled)):
        random_trial_marks = marks.loc[
            (marks.index.get_level_values('time') <= endtimes_shuffled[i])
            & (marks.index.get_level_values('time') >= starttimes_shuffled[i])]
        random_trial_marks_all = random_trial_marks_all.append(
            random_trial_marks)

    # filter for large negative marks and spike amplitude
    marks_random_trial_non_negative = trodes2SS.threshold_marks_negative(
        random_trial_marks_all, negthresh=-999)
    print('Original encode length: ', random_trial_marks_all.shape)
    print('Original encode length: ',
          random_trial_marks_all.shape,
          file=open("/data2/mcoulter/1d_decoder_log.txt", "a"))
    print('Encoding marks non-negative filter: ',
          marks_random_trial_non_negative.shape)
    print('Encoding marks non-negative filter: ',
          marks_random_trial_non_negative.shape,
          file=open("/data2/mcoulter/1d_decoder_log.txt", "a"))

    random_trial_spk_subset_sparse = trodes2SS.threshold_marks(
        marks_random_trial_non_negative, maxthresh=2000, minthresh=100)
    print('original length: ' + str(marks_random_trial_non_negative.shape[0]))
    print('after filtering: ' + str(random_trial_spk_subset_sparse.shape[0]))
    print('original length: ' + str(marks_random_trial_non_negative.shape[0]),
示例#4
0
    pos_subset = pos.loc[(pos.index.get_level_values('time') <= chunkend)
                         & (pos.index.get_level_values('time') >= chunkstart)]
    posY_subset = posY.loc[(posY.index.get_level_values('time') <= chunkend) &
                           (posY.index.get_level_values('time') >= chunkstart)]
    pos_start = pos_subset.index.get_level_values('time')[0]
    pos_end = pos_subset.index.get_level_values('time')[-1]
    #spk_subset = marks.loc[(marks.index.get_level_values('time') <  pos_end) & (marks.index.get_level_values('time') >  pos_start)]
    #rip_subset = rips.loc[(rips['starttime'].values >  pos_start) & (rips['endtime'].values <  pos_end)]
    #rip_subset = rips_vel_filtered.loc[(rips_vel_filtered['starttime'].values >  pos_start) & (rips_vel_filtered['endtime'].values <  pos_end)]

    #whole epoch
    spk_subset = marks
    rip_subset = rips_vel_filtered

    # filter for large negative marks
    marks_all_non_negative = trodes2SS.threshold_marks_negative(spk_subset,
                                                                negthresh=-999)
    print('Original encode length: ', spk_subset.shape)
    print('Original encode length: ',
          spk_subset.shape,
          file=open("/data2/mcoulter/1d_decoder_log.txt", "a"))
    print('Encoding marks non-negative filter: ', marks_all_non_negative.shape)
    print('Encoding marks non-negative filter: ',
          marks_all_non_negative.shape,
          file=open("/data2/mcoulter/1d_decoder_log.txt", "a"))

    spk_subset_sparse = trodes2SS.threshold_marks(marks_all_non_negative,
                                                  maxthresh=2000,
                                                  minthresh=100)
    print('original length: ' + str(marks_all_non_negative.shape[0]))
    print('after filtering: ' + str(spk_subset_sparse.shape[0]))
    print('original length: ' + str(marks_all_non_negative.shape[0]),