示例#1
0
def train_and_save_mnist_model(experiment_path, clean_train, triggered_train, clean_test, triggered_test,
                               model_save_dir, parallel, use_gpu):
    logger.info("Training Model...")

    def img_transform(x):
        return x.unsqueeze(0)

    logging_params = {
        'num_batches_per_logmsg': 500,
        'tensorboard_output_dir': 'tensorboard_dir/',
        'experiment_name': 'badnets',
        'num_batches_per_metrics': 500,
        'num_batches_ver_val_dataset_metrics': None,
        'num_epochs_per_metric': 10
    }
    logging_cfg = tpmc.ReportingConfig(num_batches_per_logmsg=logging_params['num_batches_per_logmsg'],
                                       tensorboard_output_dir=logging_params['tensorboard_output_dir'],
                                       experiment_name=logging_params['experiment_name'],
                                       num_batches_per_metrics=logging_params['num_batches_per_metrics'],
                                       num_batches_ver_val_dataset_metrics=logging_params[
                                           'num_batches_ver_val_dataset_metrics'],
                                       num_epochs_per_metric=logging_params['num_epochs_per_metric'])

    # Train clean model to use as a base for triggered model
    device = torch.device('cuda' if use_gpu else 'cpu')
    data_obj = tpm_tdm.DataManager(experiment_path,
                                   [clean_train, triggered_train],
                                   clean_test,
                                   triggered_test_file=triggered_test,
                                   data_transform=img_transform,
                                   shuffle_train=True)

    class MyArchFactory(tpm_af.ArchitectureFactory):
        def new_architecture(self):
            return tpma.BadNetExample()

    clean_training_cfg = tpmc.TrainingConfig(device=device,
                                             epochs=10,
                                             batch_size=100,
                                             lr=1e-4)
    clean_optim_cfg = tpmc.DefaultOptimizerConfig(clean_training_cfg, logging_cfg)
    clean_optim = tpm_do.DefaultOptimizer(clean_optim_cfg)

    triggered_training_cfg = tpmc.TrainingConfig(device=device,
                                                 epochs=200,
                                                 batch_size=15,
                                                 lr=1e-4)
    triggered_optim_cfg = tpmc.DefaultOptimizerConfig(triggered_training_cfg, logging_cfg)
    triggered_optim = tpm_do.DefaultOptimizer(triggered_optim_cfg)

    optims = [clean_optim, triggered_optim]

    model_filename = 'BadNets_0.2_poison_sequential.pt'
    cfg = tpmc.RunnerConfig(MyArchFactory(), data_obj, optimizer=optims, model_save_dir=model_save_dir,
                            stats_save_dir=model_save_dir,
                            filename=model_filename,
                            parallel=parallel)
    runner = tpmr.Runner(cfg, {'script': 'gen_and_train_mnist_sequential.py'})
    runner.run()
def train_and_save_mnist_model(experiment_path, triggered_train, clean_test,
                               triggered_test, model_save_dir, parallel,
                               use_gpu):
    logger.info("Training Model...")

    def img_transform(x):
        return x.unsqueeze(0)

    logging_params = {
        'num_batches_per_logmsg': 500,
        'tensorboard_output_dir': 'tensorboard_dir/',
        'experiment_name': 'badnets',
        'num_batches_per_metrics': 500,
        'num_epochs_per_metric': 10
    }
    logging_cfg = tpmc.ReportingConfig(
        num_batches_per_logmsg=logging_params['num_batches_per_logmsg'],
        tensorboard_output_dir=logging_params['tensorboard_output_dir'],
        experiment_name=logging_params['experiment_name'],
        num_batches_per_metrics=logging_params['num_batches_per_metrics'],
        num_epochs_per_metric=logging_params['num_epochs_per_metric'])

    # Train clean model to use as a base for triggered model
    device = torch.device('cuda' if use_gpu else 'cpu')
    num_avail_cpus = multiprocessing.cpu_count()
    num_cpus_to_use = int(.8 * num_avail_cpus)
    data_obj = tpm_tdm.DataManager(
        experiment_path,
        triggered_train,
        clean_test,
        triggered_test_file=triggered_test,
        train_data_transform=img_transform,
        test_data_transform=img_transform,
        shuffle_train=True,
        train_dataloader_kwargs={'num_workers': num_cpus_to_use})

    class MyArchFactory(tpm_af.ArchitectureFactory):
        def new_architecture(self):
            return tpma.ModdedLeNet5Net()

    training_cfg = tpmc.TrainingConfig(
        device=device,
        epochs=300,
        batch_size=20,
        lr=1e-4,
        early_stopping=tpmc.EarlyStoppingConfig())

    optim_cfg = tpmc.DefaultOptimizerConfig(training_cfg, logging_cfg)
    optim = tpm_do.DefaultOptimizer(optim_cfg)
    model_filename = 'ModdedLeNet5_0.2_poison.pt'
    cfg = tpmc.RunnerConfig(MyArchFactory(),
                            data_obj,
                            optimizer=optim,
                            model_save_dir=model_save_dir,
                            stats_save_dir=model_save_dir,
                            filename=model_filename,
                            parallel=parallel)
    runner = tpmr.Runner(cfg, {'script': 'gen_and_train_mnist.py'})
    runner.run()
示例#3
0
        training_params = tpmc.TrainingConfig(
            device=device,
            epochs=a.num_epochs,
            batch_size=32,
            lr=0.001,
            optim='adam',
            objective='cross_entropy_loss',
            early_stopping=early_stopping_argin,
            train_val_split=a.train_val_split)
        reporting_params = tpmc.ReportingConfig(
            num_batches_per_logmsg=500,
            num_epochs_per_metric=1,
            num_batches_per_metrics=default_nbpvdm,
            tensorboard_output_dir=a.tensorboard_dir,
            experiment_name=experiment_cfg['name'])
        optimizer_cfg = tpmc.DefaultOptimizerConfig(training_params,
                                                    reporting_params)

        cfg = tpmc.ModelGeneratorConfig(arch,
                                        data_obj,
                                        model_save_dir,
                                        stats_save_dir,
                                        num_models,
                                        optimizer=optimizer_cfg,
                                        experiment_cfg=experiment_cfg,
                                        parallel=True)
        # may also provide lists of run_ids or filenames are arguments to ModelGeneratorConfig to have more control
        # of saved model file names; see RunnerConfig and ModelGeneratorConfig for more information

        modelgen_cfgs.append(cfg)

    model_generator = mg.ModelGenerator(modelgen_cfgs)
示例#4
0
 def test_default_optimizer_config_copy(self):
     o1 = tpmc.DefaultOptimizerConfig()
     o2 = tpmc.DefaultOptimizerConfig()
     self.assertEqual(o1, o2)