def predict(self, batch): """ PREDICT COMMAND = { "command": "predict", "batch": [ REQUEST_INPUT ] } :param batch: list of request :return: """ headers, input_batch, req_id_map = Service.retrieve_data_for_inference( batch) self.context.request_ids = req_id_map self.context.request_processor = headers metrics = MetricsStore(req_id_map, self.context.model_name) self.context.metrics = metrics start_time = time.time() # noinspection PyBroadException try: ret = self._entry_point(input_batch, self.context) except MemoryError: logger.error("System out of memory", exc_info=True) return create_predict_response(None, req_id_map, "Out of resources", 507) except Exception as e: # pylint: disable=broad-except logger.warning("Invoking custom service failed.", exc_info=True) message = "Prediction failed: " + str(e) + " \n " + str( traceback.format_exc()) return create_predict_response(None, req_id_map, message, 503) if not isinstance(ret, list): logger.warning("model: %s, Invalid return type: %s.", self.context.model_name, type(ret)) return create_predict_response(None, req_id_map, "Invalid model predict output", 503) if len(ret) != len(input_batch): logger.warning( "model: %s, number of batch response mismatched, expect: %d, got: %d.", self.context.model_name, len(input_batch), len(ret)) return create_predict_response( None, req_id_map, "number of batch response mismatched", 503) duration = round((time.time() - start_time) * 1000, 2) metrics.add_time(PREDICTION_METRIC, duration) return create_predict_response(ret, req_id_map, "Prediction success", 200, context=self.context)
def test_metrics(caplog): """ Test if metric classes methods behave as expected Also checks global metric service methods """ # Create a batch of request ids request_ids = {0: 'abcd', 1: "xyz", 2: "qwerty", 3: "hjshfj"} all_req_ids = ','.join(request_ids.values()) model_name = "dummy model" # Create a metrics objects metrics = MetricsStore(request_ids, model_name) # Counter tests metrics.add_counter('CorrectCounter', 1, 1) test_metric = metrics.cache[get_model_key('CorrectCounter', 'count', 'xyz', model_name)] assert 'CorrectCounter' == test_metric.name metrics.add_counter('CorrectCounter', 1, 1) metrics.add_counter('CorrectCounter', 1, 3) metrics.add_counter('CorrectCounter', 1) test_metric = metrics.cache[get_model_key('CorrectCounter', 'count', all_req_ids, model_name)] assert 'CorrectCounter' == test_metric.name metrics.add_counter('CorrectCounter', 3) test_metric = metrics.cache[get_model_key('CorrectCounter', 'count', 'xyz', model_name)] assert test_metric.value == 2 test_metric = metrics.cache[get_model_key('CorrectCounter', 'count', 'hjshfj', model_name)] assert test_metric.value == 1 test_metric = metrics.cache[get_model_key('CorrectCounter', 'count', all_req_ids, model_name)] assert test_metric.value == 4 # Check what is emitted is correct emit_metrics(metrics.store) assert "hjshfj" in caplog.text assert "ModelName:dummy model" in caplog.text # Adding other types of metrics # Check for time metric with pytest.raises(Exception) as e_info: metrics.add_time('WrongTime', 20, 1, 'ns') assert "the unit for a timed metric should be one of ['ms', 's']" == e_info.value.args[ 0] metrics.add_time('CorrectTime', 20, 2, 's') metrics.add_time('CorrectTime', 20, 0) test_metric = metrics.cache[get_model_key('CorrectTime', 'ms', 'abcd', model_name)] assert test_metric.value == 20 assert test_metric.unit == 'Milliseconds' test_metric = metrics.cache[get_model_key('CorrectTime', 's', 'qwerty', model_name)] assert test_metric.value == 20 assert test_metric.unit == 'Seconds' # Size based metrics with pytest.raises(Exception) as e_info: metrics.add_size('WrongSize', 20, 1, 'TB') assert "The unit for size based metric is one of ['MB','kB', 'GB', 'B']" == e_info.value.args[ 0] metrics.add_size('CorrectSize', 200, 0, 'GB') metrics.add_size('CorrectSize', 10, 2) test_metric = metrics.cache[get_model_key('CorrectSize', 'GB', 'abcd', model_name)] assert test_metric.value == 200 assert test_metric.unit == 'Gigabytes' test_metric = metrics.cache[get_model_key('CorrectSize', 'MB', 'qwerty', model_name)] assert test_metric.value == 10 assert test_metric.unit == 'Megabytes' # Check a percentage metric metrics.add_percent('CorrectPercent', 20.0, 3) test_metric = metrics.cache[get_model_key('CorrectPercent', 'percent', 'hjshfj', model_name)] assert test_metric.value == 20.0 assert test_metric.unit == 'Percent' # Check a error metric metrics.add_error('CorrectError', 'Wrong values') test_metric = metrics.cache[get_error_key('CorrectError', '')] assert test_metric.value == 'Wrong values'