def get_global_feature(self):
     """
     获取时域全局特征,包含最大值、标准差、平均值
     :param hadcropped:
     :return:
     """
     square_data, square_energy, square_azrate = self.pre_process(method='hanning', ifcrop=True)
     func = lambda x: [
         # feature_calc.autocorrelation(norm(x), 5),
         np.std(x),
         feature_calc.approximate_entropy(norm(x), 5, 1),
         feature_calc.cid_ce(x, normalize=True),
         feature_calc.count_above_mean(x),
         feature_calc.first_location_of_minimum(x),
         feature_calc.first_location_of_maximum(x),
         feature_calc.last_location_of_maximum(x),
         feature_calc.last_location_of_minimum(x),
         feature_calc.longest_strike_above_mean(x),
         feature_calc.number_crossing_m(x, 0.8*np.max(x)),
         feature_calc.skewness(x),
         feature_calc.time_reversal_asymmetry_statistic(x, 5)
                       ]
     # global features I want to get
     upper_rate = self.get_upper_rate(square_energy)
     feature = np.hstack([
         [np.mean(norm(square_energy))],
         [upper_rate],
         func(square_azrate),
         func(square_energy)
     ])
     return feature
示例#2
0
def complexity(mag):
    """This function calculator is an estimate for a time series complexity.
    A higher value represents more complexity (more peaks,valleys,etc.)
    See: Batista, Gustavo EAPA, et al (2014). CID: an efficient complexity-invariant 
    distance for time series. Data Mining and Knowledge Difscovery 28.3 (2014): 634-669.

    rtype: float
    """
    c = ts.cid_ce(mag, True)
    return c
    def get_mfcc_feature(self, hadcropped=False):
        '''
        calculate Mel-frequency cepstral coefficients in frequency domain and extract features from MFCC
        :return: numpy array
        '''
        assert self.frame_per_second not in [32, 64, 128, 256], \
            Exception("Cannot operate butterfly computation ,"
                      "frame per second should in [32, 64, 128, 256]")
        hanning_kernel = self.get_window(method='hanning')
        windowed = self._add_window(hanning_kernel, self.meta_audio_data)  # [num_frame, kernel_size]
        hanning_energy = self.get_energy(self.meta_audio_data, hanning_kernel)

        if not hadcropped:
            boundary = self.get_boundary(hanning_energy)
            cropped = windowed[boundary[0]: boundary[1] + 1, :]
            frequency = np.vstack([fft.fft(frame.squeeze()) for frame in np.vsplit(cropped, len(cropped))])
        else:
            frequency = np.vstack([fft.fft(windowed)])
        frequency = np.abs(frequency)
        frequency_energy = frequency ** 2

        low_freq = self.sr / self.num_per_frame
        high_freq = self.sr

        H = self._mfcc_filter(self.mfcc_cof, low_freq, high_freq)
        S = np.dot(frequency_energy, H.transpose())  # (F, M)
        cos_ary = self._discrete_cosine_transform()
        mfcc_raw_features = np.sqrt(2 / self.mfcc_cof) * np.dot(S, cos_ary)  # (F,N)

        upper = [self.get_upper_rate(fea) for fea in mfcc_raw_features.transpose()]
        assert len(upper) == mfcc_raw_features.shape[1]

        func = lambda x: [
            # feature_calc.autocorrelation(norm(x), 5),
            np.std(x),
            feature_calc.approximate_entropy(norm(x), 5, 1),
            feature_calc.cid_ce(x, normalize=True),
            feature_calc.count_above_mean(x),
            feature_calc.first_location_of_minimum(x),
            feature_calc.first_location_of_maximum(x),
            feature_calc.last_location_of_maximum(x),
            feature_calc.last_location_of_minimum(x),
            feature_calc.longest_strike_above_mean(x),
            feature_calc.number_crossing_m(x, 0.8*np.max(x)),
            feature_calc.skewness(x),
            feature_calc.time_reversal_asymmetry_statistic(x, 5)
                          ]

        mfcc_features = np.hstack(
            [func(col) for col in mfcc_raw_features.transpose()]

        )
        return mfcc_features
示例#4
0
    def features(self, x, y, seg_id):
        feature_dict = dict()
        feature_dict['target'] = y
        feature_dict['seg_id'] = seg_id
        x = pd.Series(denoise_signal(x, wavelet='db1', level=1))
        #x = x - np.mean(x)

        zc = np.fft.fft(x)
        zc = zc[:37500]

        # FFT transform values
        realFFT = np.real(zc)
        imagFFT = np.imag(zc)

        freq_bands = [x for x in range(0, 37500, 7500)]
        magFFT = np.sqrt(realFFT**2 + imagFFT**2)
        phzFFT = np.arctan(imagFFT / realFFT)
        phzFFT[phzFFT == -np.inf] = -np.pi / 2.0
        phzFFT[phzFFT == np.inf] = np.pi / 2.0
        phzFFT = np.nan_to_num(phzFFT)

        for freq in freq_bands:
            if freq == 0:
                continue
            feature_dict['FFT_Mag_01q%d' % freq] = np.quantile(
                magFFT[freq:freq + 7500], 0.01)
            feature_dict['FFT_Mag_10q%d' % freq] = np.quantile(
                magFFT[freq:freq + 7500], 0.1)
            feature_dict['FFT_Mag_90q%d' % freq] = np.quantile(
                magFFT[freq:freq + 7500], 0.9)
            feature_dict['FFT_Mag_99q%d' % freq] = np.quantile(
                magFFT[freq:freq + 7500], 0.99)
            feature_dict['FFT_Mag_mean%d' % freq] = np.mean(magFFT[freq:freq +
                                                                   7500])
            feature_dict['FFT_Mag_std%d' % freq] = np.std(magFFT[freq:freq +
                                                                 7500])
            feature_dict['FFT_Mag_max%d' % freq] = np.max(magFFT[freq:freq +
                                                                 7500])

        for p in [10]:
            feature_dict[f'num_peaks_{p}'] = feature_calculators.number_peaks(
                x, 10)

        feature_dict['cid_ce'] = feature_calculators.cid_ce(x, normalize=True)

        for w in [5]:
            feature_dict[
                f'autocorrelation_{w}'] = feature_calculators.autocorrelation(
                    x, w)
        return feature_dict
def preproc(d):
    df = pd.DataFrame(d)
    x_autocorr = df.apply(lambda x: x.autocorr(lag=5), axis=1)
    x_mean = df.apply(lambda x: np.mean(x), axis=1)
    x_max = df.apply(lambda x: np.max(x), axis=1)
    x_c3 = df.apply(lambda x: tsf_calc.c3(x, 5), axis=1)
    x_cid = standardize(df.apply(lambda x: tsf_calc.cid_ce(x, False), axis=1))
    x_sym = df.apply(lambda x: 0
                     if tsf_calc.symmetry_looking(x, [{
                         'r': 0.0106
                     }])[0][1] else 1,
                     axis=1)  # all observations that are strongly asymmetric

    return pd.concat([x_autocorr, x_mean, x_max, x_c3, x_cid, x_sym], axis=1)
示例#6
0
def CIDCELag3(fragment):
    return fc.cid_ce(fragment,3)
示例#7
0
def calculate_complexity_estimation(traffic):
    return feature_calculators.cid_ce(traffic, normalize=True)
 def function(x):
     return cid_ce(x, normalize=self.normalize)
示例#9
0
    def features(self, x, prefix):
        feature_dict = dict()

        # create features here
        # numpy
        feature_dict[prefix + '_' + 'mean'] = np.mean(x)
        feature_dict[prefix + '_' + 'max'] = np.max(x)
        feature_dict[prefix + '_' + 'min'] = np.min(x)
        feature_dict[prefix + '_' + 'std'] = np.std(x)
        feature_dict[prefix + '_' + 'var'] = np.var(x)
        feature_dict[prefix + '_' + 'ptp'] = np.ptp(x)
        feature_dict[prefix + '_' + 'percentile_10'] = np.percentile(x, 10)
        feature_dict[prefix + '_' + 'percentile_20'] = np.percentile(x, 20)
        feature_dict[prefix + '_' + 'percentile_30'] = np.percentile(x, 30)
        feature_dict[prefix + '_' + 'percentile_40'] = np.percentile(x, 40)
        feature_dict[prefix + '_' + 'percentile_50'] = np.percentile(x, 50)
        feature_dict[prefix + '_' + 'percentile_60'] = np.percentile(x, 60)
        feature_dict[prefix + '_' + 'percentile_70'] = np.percentile(x, 70)
        feature_dict[prefix + '_' + 'percentile_80'] = np.percentile(x, 80)
        feature_dict[prefix + '_' + 'percentile_90'] = np.percentile(x, 90)

        # scipy
        feature_dict[prefix + '_' + 'skew'] = sp.stats.skew(x)
        feature_dict[prefix + '_' + 'kurtosis'] = sp.stats.kurtosis(x)
        feature_dict[prefix + '_' + 'kstat_1'] = sp.stats.kstat(x, 1)
        feature_dict[prefix + '_' + 'kstat_2'] = sp.stats.kstat(x, 2)
        feature_dict[prefix + '_' + 'kstat_3'] = sp.stats.kstat(x, 3)
        feature_dict[prefix + '_' + 'kstat_4'] = sp.stats.kstat(x, 4)
        feature_dict[prefix + '_' + 'moment_1'] = sp.stats.moment(x, 1)
        feature_dict[prefix + '_' + 'moment_2'] = sp.stats.moment(x, 2)
        feature_dict[prefix + '_' + 'moment_3'] = sp.stats.moment(x, 3)
        feature_dict[prefix + '_' + 'moment_4'] = sp.stats.moment(x, 4)

        # tsfresh
        feature_dict[prefix + '_' +
                     'abs_energy'] = feature_calculators.abs_energy(x)
        feature_dict[
            prefix + '_' +
            'abs_sum_of_changes'] = feature_calculators.absolute_sum_of_changes(
                x)
        feature_dict[
            prefix + '_' +
            'count_above_mean'] = feature_calculators.count_above_mean(x)
        feature_dict[
            prefix + '_' +
            'count_below_mean'] = feature_calculators.count_below_mean(x)
        feature_dict[prefix + '_' +
                     'mean_abs_change'] = feature_calculators.mean_abs_change(
                         x)
        feature_dict[prefix + '_' +
                     'mean_change'] = feature_calculators.mean_change(x)
        feature_dict[
            prefix + '_' +
            'var_larger_than_std_dev'] = feature_calculators.variance_larger_than_standard_deviation(
                x)
        feature_dict[prefix + '_' +
                     'range_minf_m4000'] = feature_calculators.range_count(
                         x, -np.inf, -4000)
        feature_dict[prefix + '_' +
                     'range_m4000_m3000'] = feature_calculators.range_count(
                         x, -4000, -3000)
        feature_dict[prefix + '_' +
                     'range_m3000_m2000'] = feature_calculators.range_count(
                         x, -3000, -2000)
        feature_dict[prefix + '_' +
                     'range_m2000_m1000'] = feature_calculators.range_count(
                         x, -2000, -1000)
        feature_dict[prefix + '_' +
                     'range_m1000_0'] = feature_calculators.range_count(
                         x, -1000, 0)
        feature_dict[prefix + '_' +
                     'range_0_p1000'] = feature_calculators.range_count(
                         x, 0, 1000)
        feature_dict[prefix + '_' +
                     'range_p1000_p2000'] = feature_calculators.range_count(
                         x, 1000, 2000)
        feature_dict[prefix + '_' +
                     'range_p2000_p3000'] = feature_calculators.range_count(
                         x, 2000, 3000)
        feature_dict[prefix + '_' +
                     'range_p3000_p4000'] = feature_calculators.range_count(
                         x, 3000, 4000)
        feature_dict[prefix + '_' +
                     'range_p4000_pinf'] = feature_calculators.range_count(
                         x, 4000, np.inf)

        feature_dict[
            prefix + '_' +
            'ratio_unique_values'] = feature_calculators.ratio_value_number_to_time_series_length(
                x)
        feature_dict[
            prefix + '_' +
            'first_loc_min'] = feature_calculators.first_location_of_minimum(x)
        feature_dict[
            prefix + '_' +
            'first_loc_max'] = feature_calculators.first_location_of_maximum(x)
        feature_dict[
            prefix + '_' +
            'last_loc_min'] = feature_calculators.last_location_of_minimum(x)
        feature_dict[
            prefix + '_' +
            'last_loc_max'] = feature_calculators.last_location_of_maximum(x)
        feature_dict[
            prefix + '_' +
            'time_rev_asym_stat_10'] = feature_calculators.time_reversal_asymmetry_statistic(
                x, 10)
        feature_dict[
            prefix + '_' +
            'time_rev_asym_stat_100'] = feature_calculators.time_reversal_asymmetry_statistic(
                x, 100)
        feature_dict[
            prefix + '_' +
            'time_rev_asym_stat_1000'] = feature_calculators.time_reversal_asymmetry_statistic(
                x, 1000)
        feature_dict[
            prefix + '_' +
            'autocorrelation_1'] = feature_calculators.autocorrelation(x, 1)
        feature_dict[
            prefix + '_' +
            'autocorrelation_2'] = feature_calculators.autocorrelation(x, 2)
        feature_dict[
            prefix + '_' +
            'autocorrelation_3'] = feature_calculators.autocorrelation(x, 3)
        feature_dict[
            prefix + '_' +
            'autocorrelation_4'] = feature_calculators.autocorrelation(x, 4)
        feature_dict[
            prefix + '_' +
            'autocorrelation_5'] = feature_calculators.autocorrelation(x, 5)
        feature_dict[
            prefix + '_' +
            'autocorrelation_6'] = feature_calculators.autocorrelation(x, 6)
        feature_dict[
            prefix + '_' +
            'autocorrelation_7'] = feature_calculators.autocorrelation(x, 7)
        feature_dict[
            prefix + '_' +
            'autocorrelation_8'] = feature_calculators.autocorrelation(x, 8)
        feature_dict[
            prefix + '_' +
            'autocorrelation_9'] = feature_calculators.autocorrelation(x, 9)
        feature_dict[
            prefix + '_' +
            'autocorrelation_10'] = feature_calculators.autocorrelation(x, 10)
        feature_dict[
            prefix + '_' +
            'autocorrelation_50'] = feature_calculators.autocorrelation(x, 50)
        feature_dict[
            prefix + '_' +
            'autocorrelation_100'] = feature_calculators.autocorrelation(
                x, 100)
        feature_dict[
            prefix + '_' +
            'autocorrelation_1000'] = feature_calculators.autocorrelation(
                x, 1000)
        feature_dict[prefix + '_' + 'c3_1'] = feature_calculators.c3(x, 1)
        feature_dict[prefix + '_' + 'c3_2'] = feature_calculators.c3(x, 2)
        feature_dict[prefix + '_' + 'c3_3'] = feature_calculators.c3(x, 3)
        feature_dict[prefix + '_' + 'c3_4'] = feature_calculators.c3(x, 4)
        feature_dict[prefix + '_' + 'c3_5'] = feature_calculators.c3(x, 5)
        feature_dict[prefix + '_' + 'c3_10'] = feature_calculators.c3(x, 10)
        feature_dict[prefix + '_' + 'c3_100'] = feature_calculators.c3(x, 100)
        for c in range(1, 34):
            feature_dict[prefix + '_' + 'fft_{0}_real'.format(c)] = list(
                feature_calculators.fft_coefficient(x, [{
                    'coeff': c,
                    'attr': 'real'
                }]))[0][1]
            feature_dict[prefix + '_' + 'fft_{0}_imag'.format(c)] = list(
                feature_calculators.fft_coefficient(x, [{
                    'coeff': c,
                    'attr': 'imag'
                }]))[0][1]
            feature_dict[prefix + '_' + 'fft_{0}_ang'.format(c)] = list(
                feature_calculators.fft_coefficient(x, [{
                    'coeff': c,
                    'attr': 'angle'
                }]))[0][1]
        feature_dict[
            prefix + '_' +
            'long_strk_above_mean'] = feature_calculators.longest_strike_above_mean(
                x)
        feature_dict[
            prefix + '_' +
            'long_strk_below_mean'] = feature_calculators.longest_strike_below_mean(
                x)
        feature_dict[prefix + '_' + 'cid_ce_0'] = feature_calculators.cid_ce(
            x, 0)
        feature_dict[prefix + '_' + 'cid_ce_1'] = feature_calculators.cid_ce(
            x, 1)
        feature_dict[prefix + '_' +
                     'binned_entropy_5'] = feature_calculators.binned_entropy(
                         x, 5)
        feature_dict[prefix + '_' +
                     'binned_entropy_10'] = feature_calculators.binned_entropy(
                         x, 10)
        feature_dict[prefix + '_' +
                     'binned_entropy_20'] = feature_calculators.binned_entropy(
                         x, 20)
        feature_dict[prefix + '_' +
                     'binned_entropy_50'] = feature_calculators.binned_entropy(
                         x, 50)
        feature_dict[prefix + '_' +
                     'binned_entropy_80'] = feature_calculators.binned_entropy(
                         x, 80)
        feature_dict[
            prefix + '_' +
            'binned_entropy_100'] = feature_calculators.binned_entropy(x, 100)

        feature_dict[prefix + '_' +
                     'num_crossing_0'] = feature_calculators.number_crossing_m(
                         x, 0)
        feature_dict[prefix + '_' +
                     'num_peaks_1'] = feature_calculators.number_peaks(x, 1)
        feature_dict[prefix + '_' +
                     'num_peaks_3'] = feature_calculators.number_peaks(x, 3)
        feature_dict[prefix + '_' +
                     'num_peaks_5'] = feature_calculators.number_peaks(x, 5)
        feature_dict[prefix + '_' +
                     'num_peaks_10'] = feature_calculators.number_peaks(x, 10)
        feature_dict[prefix + '_' +
                     'num_peaks_50'] = feature_calculators.number_peaks(x, 50)
        feature_dict[prefix + '_' +
                     'num_peaks_100'] = feature_calculators.number_peaks(
                         x, 100)
        feature_dict[prefix + '_' +
                     'num_peaks_500'] = feature_calculators.number_peaks(
                         x, 500)

        feature_dict[prefix + '_' + 'spkt_welch_density_1'] = list(
            feature_calculators.spkt_welch_density(x, [{
                'coeff': 1
            }]))[0][1]
        feature_dict[prefix + '_' + 'spkt_welch_density_2'] = list(
            feature_calculators.spkt_welch_density(x, [{
                'coeff': 2
            }]))[0][1]
        feature_dict[prefix + '_' + 'spkt_welch_density_5'] = list(
            feature_calculators.spkt_welch_density(x, [{
                'coeff': 5
            }]))[0][1]
        feature_dict[prefix + '_' + 'spkt_welch_density_8'] = list(
            feature_calculators.spkt_welch_density(x, [{
                'coeff': 8
            }]))[0][1]
        feature_dict[prefix + '_' + 'spkt_welch_density_10'] = list(
            feature_calculators.spkt_welch_density(x, [{
                'coeff': 10
            }]))[0][1]
        feature_dict[prefix + '_' + 'spkt_welch_density_50'] = list(
            feature_calculators.spkt_welch_density(x, [{
                'coeff': 50
            }]))[0][1]
        feature_dict[prefix + '_' + 'spkt_welch_density_100'] = list(
            feature_calculators.spkt_welch_density(x, [{
                'coeff': 100
            }]))[0][1]

        feature_dict[
            prefix + '_' +
            'time_rev_asym_stat_1'] = feature_calculators.time_reversal_asymmetry_statistic(
                x, 1)
        feature_dict[
            prefix + '_' +
            'time_rev_asym_stat_2'] = feature_calculators.time_reversal_asymmetry_statistic(
                x, 2)
        feature_dict[
            prefix + '_' +
            'time_rev_asym_stat_3'] = feature_calculators.time_reversal_asymmetry_statistic(
                x, 3)
        feature_dict[
            prefix + '_' +
            'time_rev_asym_stat_4'] = feature_calculators.time_reversal_asymmetry_statistic(
                x, 4)
        feature_dict[
            prefix + '_' +
            'time_rev_asym_stat_10'] = feature_calculators.time_reversal_asymmetry_statistic(
                x, 10)
        feature_dict[
            prefix + '_' +
            'time_rev_asym_stat_100'] = feature_calculators.time_reversal_asymmetry_statistic(
                x, 100)

        for r in range(20):
            feature_dict[prefix + '_' + 'symmetry_looking_' +
                         str(r)] = feature_calculators.symmetry_looking(
                             x, [{
                                 'r': r * 0.05
                             }])[0][1]

        for r in range(1, 20):
            feature_dict[
                prefix + '_' + 'large_standard_deviation_' +
                str(r)] = feature_calculators.large_standard_deviation(
                    x, r * 0.05)

        for r in range(1, 10):
            feature_dict[prefix + '_' + 'quantile_' +
                         str(r)] = feature_calculators.quantile(x, r * 0.1)

        for r in ['mean', 'median', 'var']:
            feature_dict[prefix + '_' + 'agg_autocorr_' +
                         r] = feature_calculators.agg_autocorrelation(
                             x, [{
                                 'f_agg': r,
                                 'maxlag': 40
                             }])[0][-1]

        #for r in range(1, 6):
        #    feature_dict[prefix+'_'+'number_cwt_peaks_'+str(r)] = feature_calculators.number_cwt_peaks(x, r)

        for r in range(1, 10):
            feature_dict[prefix + '_' + 'index_mass_quantile_' +
                         str(r)] = feature_calculators.index_mass_quantile(
                             x, [{
                                 'q': r
                             }])[0][1]

        #for ql in [0., .2, .4, .6, .8]:
        #    for qh in [.2, .4, .6, .8, 1.]:
        #        if ql < qh:
        #            for b in [False, True]:
        #                for f in ["mean", "var"]:
        #                    feature_dict[prefix+'_'+'change_quantiles_'+str(ql)+'_'+str(qh)+'_'+str(b)+'_'+str(f)] = feature_calculators.change_quantiles(x, ql, qh, b, f)

        #for r in [.1, .3, .5, .7, .9]:
        #    feature_dict[prefix+'_'+'approximate_entropy_'+str(r)] = feature_calculators.approximate_entropy(x, 2, r)

        feature_dict[
            prefix + '_' +
            'max_langevin_fixed_point'] = feature_calculators.max_langevin_fixed_point(
                x, 3, 30)

        for r in ['pvalue', 'rvalue', 'intercept', 'slope', 'stderr']:
            feature_dict[prefix + '_' + 'linear_trend_' +
                         str(r)] = feature_calculators.linear_trend(
                             x, [{
                                 'attr': r
                             }])[0][1]

        for r in ['pvalue', 'teststat', 'usedlag']:
            feature_dict[prefix + '_' + 'augmented_dickey_fuller_' +
                         r] = feature_calculators.augmented_dickey_fuller(
                             x, [{
                                 'attr': r
                             }])[0][1]

        for r in [0.5, 1, 1.5, 2, 2.5, 3, 5, 6, 7, 10]:
            feature_dict[prefix + '_' + 'ratio_beyond_r_sigma_' +
                         str(r)] = feature_calculators.ratio_beyond_r_sigma(
                             x, r)

        #for attr in ["pvalue", "rvalue", "intercept", "slope", "stderr"]:
        #    feature_dict[prefix+'_'+'linear_trend_timewise_'+attr] = feature_calculators.linear_trend_timewise(x, [{'attr': attr}])[0][1]
        #for attr in ["rvalue", "intercept", "slope", "stderr"]:
        #    for i in [5, 10, 50]:
        #        for f in ["max", "min", "mean", "var"]:
        #            feature_dict[prefix+'_'+'agg_linear_trend_'+attr+'_'+str(i)+'_'+f] = feature_calculators.agg_linear_trend(x, [{'attr': attr, 'chunk_len': i, 'f_agg': f}])[0][-1]
        #for width in [2, 5, 10, 20]:
        #    for coeff in range(15):
        #        for w in [2, 5, 10, 20]:
        #            feature_dict[prefix+'_'+'cwt_coefficients_'+str(width)+'_'+str(coeff)+'_'+str(w)] = list(feature_calculators.cwt_coefficients(x, [{'widths': width, 'coeff': coeff, 'w': w}]))[0][1]
        #for r in range(10):
        #    feature_dict[prefix+'_'+'partial_autocorr_'+str(r)] = feature_calculators.partial_autocorrelation(x, [{'lag': r}])[0][1]
        # "ar_coefficient": [{"coeff": coeff, "k": k} for coeff in range(5) for k in [10]],
        # "fft_coefficient": [{"coeff": k, "attr": a} for a, k in product(["real", "imag", "abs", "angle"], range(100))],
        # "fft_aggregated": [{"aggtype": s} for s in ["centroid", "variance", "skew", "kurtosis"]],
        # "value_count": [{"value": value} for value in [0, 1, -1]],
        # "range_count": [{"min": -1, "max": 1}, {"min": 1e12, "max": 0}, {"min": 0, "max": 1e12}],
        # "friedrich_coefficients": (lambda m: [{"coeff": coeff, "m": m, "r": 30} for coeff in range(m + 1)])(3),
        #  "energy_ratio_by_chunks": [{"num_segments": 10, "segment_focus": i} for i in range(10)],
        return feature_dict
def generate_time_series_feats(x_dataset, dataset_name="raw", test=False):
    make_dir_if_not_exists(os.path.join(FEATURES_PATH, 'tsfeats'))
    time_length = x_dataset.shape[1]

    features_function_dict = {
        "mean":
        mean,
        "median":
        median,
        "length":
        length,
        "minimum":
        minimum,
        "maximum":
        maximum,
        "variance":
        variance,
        "skewness":
        skewness,
        "kurtosis":
        kurtosis,
        "sum_values":
        sum_values,
        "abs_energy":
        abs_energy,
        "mean_change":
        mean_change,
        "mean_abs_change":
        mean_abs_change,
        "count_below_mean":
        count_below_mean,
        "count_above_mean":
        count_above_mean,
        "has_duplicate_min":
        has_duplicate_min,
        "has_duplicate_max":
        has_duplicate_max,
        "standard_deviation":
        standard_deviation,
        "absolute_sum_of_changes":
        absolute_sum_of_changes,
        "last_location_of_minimum":
        last_location_of_minimum,
        "last_location_of_maximum":
        last_location_of_maximum,
        "first_location_of_maximum":
        first_location_of_maximum,
        "longest_strike_below_mean":
        longest_strike_below_mean,
        "longest_strike_above_mean":
        longest_strike_above_mean,
        "sum_of_reoccurring_values":
        sum_of_reoccurring_values,
        "first_location_of_minimum":
        first_location_of_minimum,
        "sum_of_reoccurring_data_points":
        sum_of_reoccurring_data_points,
        "variance_larger_than_standard_deviation":
        variance_larger_than_standard_deviation,
        "ratio_value_number_to_time_series_length":
        ratio_value_number_to_time_series_length,
        "percentage_of_reoccurring_values_to_all_values":
        percentage_of_reoccurring_values_to_all_values,
        "binned_entropy_max300":
        lambda x: binned_entropy(x, 300),
        "binned_entropy_max400":
        lambda x: binned_entropy(x, 400),
        "cid_ce_true":
        lambda x: cid_ce(x, True),
        "cid_ce_false":
        lambda x: cid_ce(x, False),
        "percentage_of_reoccurring_datapoints_to_all_datapoints":
        percentage_of_reoccurring_datapoints_to_all_datapoints
    }

    for feature_name, function_call in features_function_dict.iteritems():
        print "{:.<70s}".format("- Processing feature: %s" % feature_name),
        feature_name = 'tsfeats/%s_%s' % (dataset_name, feature_name)
        if not features_exists(feature_name, test):
            feats = x_dataset.apply(function_call, axis=1, raw=True).values
            save_features(feats, feature_name, test)
            print("Done")
        else:
            print("Already generated")

    ar_param_k100 = [{"coeff": i, "k": 100} for i in range(100 + 1)]
    ar_param_k500 = [{"coeff": i, "k": 500} for i in range(500 + 1)]
    agg50_mean_linear_trend = [{
        "attr": val,
        "chunk_len": 50,
        "f_agg": "mean"
    } for val in ("pvalue", "rvalue", "intercept", "slope", "stderr")]
    aug_dickey_fuler_params = [{
        "attr": "teststat"
    }, {
        "attr": "pvalue"
    }, {
        "attr": "usedlag"
    }]
    energy_ratio_num10_focus5 = [{"num_segments": 10, "segment_focus": 5}]
    fft_aggr_spectrum = [{
        "aggtype": "centroid"
    }, {
        "aggtype": "variance"
    }, {
        "aggtype": "skew"
    }, {
        "aggtype": "kurtosis"
    }]
    fft_coefficient_real = [{
        "coeff": i,
        "attr": "real"
    } for i in range((time_length + 1) // 2)]
    fft_coefficient_imag = [{
        "coeff": i,
        "attr": "imag"
    } for i in range((time_length + 1) // 2)]
    fft_coefficient_abs = [{
        "coeff": i,
        "attr": "abs"
    } for i in range((time_length + 1) // 2)]
    fft_coefficient_angle = [{
        "coeff": i,
        "attr": "angle"
    } for i in range((time_length + 1) // 2)]
    linear_trend_params = [{
        "attr": val
    } for val in ("pvalue", "rvalue", "intercept", "slope", "stderr")]

    other_feats_dict = {
        "ar_coeff100":
        lambda x: dict(ar_coefficient(x, ar_param_k100)),
        "ar_coeff500":
        lambda x: dict(ar_coefficient(x, ar_param_k500)),
        "agg50_mean_lin_trend":
        lambda x: dict(agg_linear_trend(x, agg50_mean_linear_trend)),
        "aug_dickey_fuler":
        lambda x: dict(augmented_dickey_fuller(x, aug_dickey_fuler_params)),
        "energy_ratio_num10_focus5":
        lambda x: dict(energy_ratio_by_chunks(x, energy_ratio_num10_focus5)),
        "fft_aggr_spectrum":
        lambda x: dict(fft_aggregated(x, fft_aggr_spectrum)),
        "fft_coeff_real":
        lambda x: dict(fft_coefficient(x, fft_coefficient_real)),
        "fft_coeff_imag":
        lambda x: dict(fft_coefficient(x, fft_coefficient_imag)),
        "fft_coeff_abs":
        lambda x: dict(fft_coefficient(x, fft_coefficient_abs)),
        "fft_coeff_angle":
        lambda x: dict(fft_coefficient(x, fft_coefficient_angle)),
        "linear_trend":
        lambda x: dict(linear_trend(x, linear_trend_params)),
    }

    for feature_name, function_call in other_feats_dict.iteritems():
        print "{:.<70s}".format("- Processing features: %s" % feature_name),
        feature_name = 'tsfeats/%s_%s' % (dataset_name, feature_name)
        if not features_exists(feature_name, test):
            feats_dict = x_dataset.apply(function_call, axis=1,
                                         raw=True).values.tolist()
            feats = pd.DataFrame.from_dict(feats_dict)
            save_features(feats.values, feature_name, test)
            print("Done")
        else:
            print("Already generated")

    # Auto-correlations as features
    print("- Processing Auto-correlation features...")
    corr_dataset = x_dataset.apply(autocorrelation_all, axis=1, raw=True)
    save_features(corr_dataset.values,
                  '%s_auto_correlation_all' % dataset_name, test)

    print("- Processing ARIMA(5,5,1) Features...")
    arima_features = parallelize_row(x_dataset.values,
                                     generate_arima_feats,
                                     n_jobs=2)
    assert arima_features.shape[0] == x_dataset.shape[0]  # Assert the axis
    save_features(arima_features, '%s_arima_5_5_1' % dataset_name, test)
示例#11
0
def CIDCELag11(fragment):
    return fc.cid_ce(fragment,11)
示例#12
0
def transform_pack3(df):
    """ augment X from tsfresh features"""
    x = df.values
    output = {}

    output['kstat_1'] = stats.kstat(x, 1)
    output['kstat_2'] = stats.kstat(x, 2)
    output['kstat_3'] = stats.kstat(x, 3)
    output['kstat_4'] = stats.kstat(x, 4)
    output['abs_energy'] = feature_calculators.abs_energy(x)
    output['abs_sum_of_changes'] = feature_calculators.absolute_sum_of_changes(
        x)
    output['count_above_mean'] = feature_calculators.count_above_mean(x)
    output['count_below_mean'] = feature_calculators.count_below_mean(x)
    output['range_minf_m4000'] = feature_calculators.range_count(
        x, -np.inf, -4000)
    output['range_m4000_m3000'] = feature_calculators.range_count(
        x, -4000, -3000)
    output['range_m3000_m2000'] = feature_calculators.range_count(
        x, -3000, -2000)
    output['range_m2000_m1000'] = feature_calculators.range_count(
        x, -2000, -1000)
    output['range_m1000_0'] = feature_calculators.range_count(x, -1000, 0)
    output['range_0_p1000'] = feature_calculators.range_count(x, 0, 1000)
    output['range_p1000_p2000'] = feature_calculators.range_count(
        x, 1000, 2000)
    output['range_p2000_p3000'] = feature_calculators.range_count(
        x, 2000, 3000)
    output['range_p3000_p4000'] = feature_calculators.range_count(
        x, 3000, 4000)
    output['range_p4000_pinf'] = feature_calculators.range_count(
        x, 4000, np.inf)

    output[
        'ratio_unique_values'] = feature_calculators.ratio_value_number_to_time_series_length(
            x)
    output['first_loc_min'] = feature_calculators.first_location_of_minimum(x)
    output['first_loc_max'] = feature_calculators.first_location_of_maximum(x)
    output['last_loc_min'] = feature_calculators.last_location_of_minimum(x)
    output['last_loc_max'] = feature_calculators.last_location_of_maximum(x)
    output[
        'time_rev_asym_stat_10'] = feature_calculators.time_reversal_asymmetry_statistic(
            x, 10)
    output[
        'time_rev_asym_stat_100'] = feature_calculators.time_reversal_asymmetry_statistic(
            x, 100)
    output[
        'time_rev_asym_stat_1000'] = feature_calculators.time_reversal_asymmetry_statistic(
            x, 1000)

    output['autocorrelation_10'] = feature_calculators.autocorrelation(x, 10)
    output['autocorrelation_100'] = feature_calculators.autocorrelation(x, 100)
    output['autocorrelation_1000'] = feature_calculators.autocorrelation(
        x, 1000)
    output['autocorrelation_5000'] = feature_calculators.autocorrelation(
        x, 5000)

    output['c3_5'] = feature_calculators.c3(x, 5)
    output['c3_10'] = feature_calculators.c3(x, 10)
    output['c3_100'] = feature_calculators.c3(x, 100)

    output[
        'long_strk_above_mean'] = feature_calculators.longest_strike_above_mean(
            x)
    output[
        'long_strk_below_mean'] = feature_calculators.longest_strike_below_mean(
            x)
    output['cid_ce_0'] = feature_calculators.cid_ce(x, 0)
    output['cid_ce_1'] = feature_calculators.cid_ce(x, 1)
    output['binned_entropy_10'] = feature_calculators.binned_entropy(x, 10)
    output['binned_entropy_50'] = feature_calculators.binned_entropy(x, 50)
    output['binned_entropy_80'] = feature_calculators.binned_entropy(x, 80)
    output['binned_entropy_100'] = feature_calculators.binned_entropy(x, 100)

    tmp = np.abs(x)
    output['num_crossing_0'] = feature_calculators.number_crossing_m(tmp, 0)
    output['num_crossing_10'] = feature_calculators.number_crossing_m(tmp, 10)
    output['num_crossing_100'] = feature_calculators.number_crossing_m(
        tmp, 100)
    output['num_peaks_10'] = feature_calculators.number_peaks(tmp, 10)
    output['num_peaks_50'] = feature_calculators.number_peaks(tmp, 50)
    output['num_peaks_100'] = feature_calculators.number_peaks(tmp, 100)
    output['num_peaks_500'] = feature_calculators.number_peaks(tmp, 500)

    output['spkt_welch_density_1'] = list(
        feature_calculators.spkt_welch_density(x, [{
            'coeff': 1
        }]))[0][1]
    output['spkt_welch_density_10'] = list(
        feature_calculators.spkt_welch_density(x, [{
            'coeff': 10
        }]))[0][1]
    output['spkt_welch_density_50'] = list(
        feature_calculators.spkt_welch_density(x, [{
            'coeff': 50
        }]))[0][1]
    output['spkt_welch_density_100'] = list(
        feature_calculators.spkt_welch_density(x, [{
            'coeff': 100
        }]))[0][1]

    output[
        'time_rev_asym_stat_1'] = feature_calculators.time_reversal_asymmetry_statistic(
            x, 1)
    output[
        'time_rev_asym_stat_10'] = feature_calculators.time_reversal_asymmetry_statistic(
            x, 10)
    output[
        'time_rev_asym_stat_100'] = feature_calculators.time_reversal_asymmetry_statistic(
            x, 100)

    return output
示例#13
0
    def features(self, x, y, seg_id, denoise=False):
        if (denoise == True):
            x_hp = high_pass_filter(x, low_cutoff=10000, sample_rate=4000000)

            x = denoise_signal(x_hp, wavelet='haar', level=1)

        feature_dict = dict()
        feature_dict['target'] = y
        feature_dict['seg_id'] = seg_id

        # create features here

        # lists with parameters to iterate over them
        percentiles = [
            1, 5, 10, 20, 25, 30, 40, 50, 60, 70, 75, 80, 90, 95, 99
        ]
        hann_windows = [50, 150, 1500, 15000]
        spans = [300, 3000, 30000, 50000]
        windows = [10, 50, 100, 500, 1000, 10000]
        borders = list(range(-4000, 4001, 1000))
        peaks = [10, 20, 50, 100]
        coefs = [1, 5, 10, 50, 100]
        lags = [10, 100, 1000, 10000]
        autocorr_lags = [5, 10, 50, 100, 500, 1000, 5000, 10000]

        # basic stats
        feature_dict['mean'] = x.mean()
        feature_dict['std'] = x.std()
        feature_dict['max'] = x.max()
        feature_dict['min'] = x.min()

        # basic stats on absolute values
        feature_dict['mean_change_abs'] = np.mean(np.diff(x))
        feature_dict['abs_max'] = np.abs(x).max()
        feature_dict['abs_mean'] = np.abs(x).mean()
        feature_dict['abs_std'] = np.abs(x).std()

        # geometric and harminic means
        feature_dict['hmean'] = stats.hmean(np.abs(x[np.nonzero(x)[0]]))
        feature_dict['gmean'] = stats.gmean(np.abs(x[np.nonzero(x)[0]]))

        # k-statistic and moments
        for i in range(1, 5):
            feature_dict['kstat_{}'.format(i)] = stats.kstat(x, i)
            feature_dict['moment_{}'.format(i)] = stats.moment(x, i)

        for i in [1, 2]:
            feature_dict['kstatvar_{}'.format(i)] = stats.kstatvar(x, i)

        # aggregations on various slices of data
        for agg_type, slice_length, direction in product(
            ['std', 'min', 'max', 'mean'], [1000, 10000, 50000],
            ['first', 'last']):
            if direction == 'first':
                feature_dict['{}_{}_{}'.format(
                    agg_type, direction,
                    slice_length)] = x[:slice_length].agg(agg_type)
            elif direction == 'last':
                feature_dict['{}_{}_{}'.format(
                    agg_type, direction,
                    slice_length)] = x[-slice_length:].agg(agg_type)

        feature_dict['max_to_min'] = x.max() / np.abs(x.min())
        feature_dict['max_to_min_diff'] = x.max() - np.abs(x.min())
        feature_dict['count_big'] = len(x[np.abs(x) > 500])
        feature_dict['sum'] = x.sum()

        feature_dict['mean_change_rate'] = calc_change_rate(x)
        # calc_change_rate on slices of data
        for slice_length, direction in product([1000, 10000, 50000],
                                               ['first', 'last']):
            if direction == 'first':
                feature_dict['mean_change_rate_{}_{}'.format(
                    direction,
                    slice_length)] = calc_change_rate(x[:slice_length])
            elif direction == 'last':
                feature_dict['mean_change_rate_{}_{}'.format(
                    direction,
                    slice_length)] = calc_change_rate(x[-slice_length:])

        # percentiles on original and absolute values
        for p in percentiles:
            feature_dict['percentile_{}'.format(p)] = np.percentile(x, p)
            feature_dict['abs_percentile_{}'.format(p)] = np.percentile(
                np.abs(x), p)

        feature_dict['trend'] = add_trend_feature(x)
        feature_dict['abs_trend'] = add_trend_feature(x, abs_values=True)

        feature_dict['mad'] = x.mad()
        feature_dict['kurt'] = x.kurtosis()
        feature_dict['skew'] = x.skew()
        feature_dict['med'] = x.median()

        feature_dict['Hilbert_mean'] = np.abs(hilbert(x)).mean()

        for hw in hann_windows:
            feature_dict['Hann_window_mean_{}'.format(hw)] = (
                convolve(x, hann(hw), mode='same') / sum(hann(hw))).mean()

        feature_dict['classic_sta_lta1_mean'] = classic_sta_lta(x, 500,
                                                                10000).mean()
        feature_dict['classic_sta_lta2_mean'] = classic_sta_lta(
            x, 5000, 100000).mean()
        feature_dict['classic_sta_lta3_mean'] = classic_sta_lta(x, 3333,
                                                                6666).mean()
        feature_dict['classic_sta_lta4_mean'] = classic_sta_lta(
            x, 10000, 25000).mean()
        feature_dict['classic_sta_lta5_mean'] = classic_sta_lta(x, 50,
                                                                1000).mean()
        feature_dict['classic_sta_lta6_mean'] = classic_sta_lta(x, 100,
                                                                5000).mean()
        feature_dict['classic_sta_lta7_mean'] = classic_sta_lta(x, 333,
                                                                666).mean()
        feature_dict['classic_sta_lta8_mean'] = classic_sta_lta(
            x, 4000, 10000).mean()

        # exponential rolling statistics
        ewma = pd.Series.ewm
        for s in spans:
            feature_dict['exp_Moving_average_{}_mean'.format(s)] = (ewma(
                x, span=s).mean(skipna=True)).mean(skipna=True)
            feature_dict['exp_Moving_average_{}_std'.format(s)] = (ewma(
                x, span=s).mean(skipna=True)).std(skipna=True)
            feature_dict['exp_Moving_std_{}_mean'.format(s)] = (ewma(
                x, span=s).std(skipna=True)).mean(skipna=True)
            feature_dict['exp_Moving_std_{}_std'.format(s)] = (ewma(
                x, span=s).std(skipna=True)).std(skipna=True)

        feature_dict['iqr1'] = np.subtract(*np.percentile(x, [95, 5]))
        feature_dict['ave10'] = stats.trim_mean(x, 0.1)

        for slice_length, threshold in product([50000, 100000, 150000],
                                               [5, 10, 20, 50, 100]):
            feature_dict['count_big_{}_threshold_{}'.format(
                slice_length,
                threshold)] = (np.abs(x[-slice_length:]) > threshold).sum()
            feature_dict['count_big_{}_less_threshold_{}'.format(
                slice_length,
                threshold)] = (np.abs(x[-slice_length:]) < threshold).sum()

        # tfresh features take too long to calculate, so I comment them for now

        feature_dict['abs_energy'] = feature_calculators.abs_energy(x)
        feature_dict[
            'abs_sum_of_changes'] = feature_calculators.absolute_sum_of_changes(
                x)
        feature_dict[
            'count_above_mean'] = feature_calculators.count_above_mean(x)
        feature_dict[
            'count_below_mean'] = feature_calculators.count_below_mean(x)
        feature_dict['mean_abs_change'] = feature_calculators.mean_abs_change(
            x)
        feature_dict['mean_change'] = feature_calculators.mean_change(x)
        feature_dict[
            'var_larger_than_std_dev'] = feature_calculators.variance_larger_than_standard_deviation(
                x)
        feature_dict['range_minf_m4000'] = feature_calculators.range_count(
            x, -np.inf, -4000)
        feature_dict['range_p4000_pinf'] = feature_calculators.range_count(
            x, 4000, np.inf)

        for i, j in zip(borders, borders[1:]):
            feature_dict['range_{}_{}'.format(
                i, j)] = feature_calculators.range_count(x, i, j)

        feature_dict[
            'ratio_unique_values'] = feature_calculators.ratio_value_number_to_time_series_length(
                x)
        feature_dict[
            'first_loc_min'] = feature_calculators.first_location_of_minimum(x)
        feature_dict[
            'first_loc_max'] = feature_calculators.first_location_of_maximum(x)
        feature_dict[
            'last_loc_min'] = feature_calculators.last_location_of_minimum(x)
        feature_dict[
            'last_loc_max'] = feature_calculators.last_location_of_maximum(x)

        for lag in lags:
            feature_dict['time_rev_asym_stat_{}'.format(
                lag)] = feature_calculators.time_reversal_asymmetry_statistic(
                    x, lag)
        for autocorr_lag in autocorr_lags:
            feature_dict['autocorrelation_{}'.format(
                autocorr_lag)] = feature_calculators.autocorrelation(
                    x, autocorr_lag)
            feature_dict['c3_{}'.format(
                autocorr_lag)] = feature_calculators.c3(x, autocorr_lag)

        for coeff, attr in product([1, 2, 3, 4, 5], ['real', 'imag', 'angle']):
            feature_dict['fft_{}_{}'.format(coeff, attr)] = list(
                feature_calculators.fft_coefficient(x, [{
                    'coeff': coeff,
                    'attr': attr
                }]))[0][1]

        feature_dict[
            'long_strk_above_mean'] = feature_calculators.longest_strike_above_mean(
                x)
        feature_dict[
            'long_strk_below_mean'] = feature_calculators.longest_strike_below_mean(
                x)
        feature_dict['cid_ce_0'] = feature_calculators.cid_ce(x, 0)
        feature_dict['cid_ce_1'] = feature_calculators.cid_ce(x, 1)

        for p in percentiles:
            feature_dict['binned_entropy_{}'.format(
                p)] = feature_calculators.binned_entropy(x, p)

        feature_dict['num_crossing_0'] = feature_calculators.number_crossing_m(
            x, 0)

        for peak in peaks:
            feature_dict['num_peaks_{}'.format(
                peaks)] = feature_calculators.number_peaks(x, peak)

        for c in coefs:
            feature_dict['spkt_welch_density_{}'.format(c)] = list(
                feature_calculators.spkt_welch_density(x, [{
                    'coeff': c
                }]))[0][1]
            feature_dict['time_rev_asym_stat_{}'.format(
                c)] = feature_calculators.time_reversal_asymmetry_statistic(
                    x, c)

        # statistics on rolling windows of various sizes
        for w in windows:
            x_roll_std = x.rolling(w).std().dropna().values
            x_roll_mean = x.rolling(w).mean().dropna().values

            feature_dict['ave_roll_std_{}'.format(w)] = x_roll_std.mean()
            feature_dict['std_roll_std_{}'.format(w)] = x_roll_std.std()
            feature_dict['max_roll_std_{}'.format(w)] = x_roll_std.max()
            feature_dict['min_roll_std_{}'.format(w)] = x_roll_std.min()

            for p in percentiles:
                feature_dict['percentile_roll_std_{}_window_{}'.format(
                    p, w)] = np.percentile(x_roll_std, p)

            feature_dict['av_change_abs_roll_std_{}'.format(w)] = np.mean(
                np.diff(x_roll_std))
            feature_dict['av_change_rate_roll_std_{}'.format(w)] = np.mean(
                np.nonzero((np.diff(x_roll_std) / x_roll_std[:-1]))[0])
            feature_dict['abs_max_roll_std_{}'.format(w)] = np.abs(
                x_roll_std).max()

            feature_dict['ave_roll_mean_{}'.format(w)] = x_roll_mean.mean()
            feature_dict['std_roll_mean_{}'.format(w)] = x_roll_mean.std()
            feature_dict['max_roll_mean_{}'.format(w)] = x_roll_mean.max()
            feature_dict['min_roll_mean_{}'.format(w)] = x_roll_mean.min()

            for p in percentiles:
                feature_dict['percentile_roll_mean_{}_window_{}'.format(
                    p, w)] = np.percentile(x_roll_mean, p)

            feature_dict['av_change_abs_roll_mean_{}'.format(w)] = np.mean(
                np.diff(x_roll_mean))
            feature_dict['av_change_rate_roll_mean_{}'.format(w)] = np.mean(
                np.nonzero((np.diff(x_roll_mean) / x_roll_mean[:-1]))[0])
            feature_dict['abs_max_roll_mean_{}'.format(w)] = np.abs(
                x_roll_mean).max()

        return feature_dict
def create_features(seg_id, seg, X, st, end):
    """
    create features including fft features, statistical features and time series features
    :param seg_id: the ID for a sample
    :param seg: s signal segment
    :param X: train set features before creating these features
    :param st: the start index of the signal segment
    :param end: the end index of the signal segment
    :return: train set features after creating these features
    """
    try:
        # test set won't create these features because its seg_id is string
        X.loc[seg_id, 'seg_id'] = np.int32(seg_id)
        X.loc[seg_id, 'seg_start'] = np.int32(st)
        X.loc[seg_id, 'seg_end'] = np.int32(end)
    except ValueError:
        pass

    xc = pd.Series(seg['acoustic_data'].values)
    xcdm = xc - np.mean(xc)

    b, a = des_bw_filter_lp(cutoff=18000)
    xcz = sg.lfilter(b, a, xcdm)

    zc = np.fft.fft(xcz)
    zc = zc[:MAX_FREQ]

    # FFT transform values
    realFFT = np.real(zc)
    imagFFT = np.imag(zc)

    freq_bands = [x for x in range(0, MAX_FREQ, FREQ_BAND)]
    magFFT = np.sqrt(realFFT ** 2 + imagFFT ** 2)
    phzFFT = np.arctan(imagFFT / realFFT)
    phzFFT[phzFFT == -np.inf] = -np.pi / 2.0
    phzFFT[phzFFT == np.inf] = np.pi / 2.0
    phzFFT = np.nan_to_num(phzFFT)

    for freq in freq_bands:
        X.loc[seg_id, 'FFT_Mag_01q%d' % freq] = np.quantile(magFFT[freq: freq + FREQ_BAND], 0.01)
        X.loc[seg_id, 'FFT_Mag_10q%d' % freq] = np.quantile(magFFT[freq: freq + FREQ_BAND], 0.1)
        X.loc[seg_id, 'FFT_Mag_90q%d' % freq] = np.quantile(magFFT[freq: freq + FREQ_BAND], 0.9)
        X.loc[seg_id, 'FFT_Mag_99q%d' % freq] = np.quantile(magFFT[freq: freq + FREQ_BAND], 0.99)
        X.loc[seg_id, 'FFT_Mag_mean%d' % freq] = np.mean(magFFT[freq: freq + FREQ_BAND])
        X.loc[seg_id, 'FFT_Mag_std%d' % freq] = np.std(magFFT[freq: freq + FREQ_BAND])
        X.loc[seg_id, 'FFT_Mag_max%d' % freq] = np.max(magFFT[freq: freq + FREQ_BAND])

        X.loc[seg_id, 'FFT_Phz_mean%d' % freq] = np.mean(phzFFT[freq: freq + FREQ_BAND])
        X.loc[seg_id, 'FFT_Phz_std%d' % freq] = np.std(phzFFT[freq: freq + FREQ_BAND])

    X.loc[seg_id, 'FFT_Rmean'] = realFFT.mean()
    X.loc[seg_id, 'FFT_Rstd'] = realFFT.std()
    X.loc[seg_id, 'FFT_Rmax'] = realFFT.max()
    X.loc[seg_id, 'FFT_Rmin'] = realFFT.min()
    X.loc[seg_id, 'FFT_Imean'] = imagFFT.mean()
    X.loc[seg_id, 'FFT_Istd'] = imagFFT.std()
    X.loc[seg_id, 'FFT_Imax'] = imagFFT.max()
    X.loc[seg_id, 'FFT_Imin'] = imagFFT.min()

    X.loc[seg_id, 'FFT_Rmean_first_6000'] = realFFT[:6000].mean()
    X.loc[seg_id, 'FFT_Rstd__first_6000'] = realFFT[:6000].std()
    X.loc[seg_id, 'FFT_Rmax_first_6000'] = realFFT[:6000].max()
    X.loc[seg_id, 'FFT_Rmin_first_6000'] = realFFT[:6000].min()
    X.loc[seg_id, 'FFT_Rmean_first_18000'] = realFFT[:18000].mean()
    X.loc[seg_id, 'FFT_Rstd_first_18000'] = realFFT[:18000].std()
    X.loc[seg_id, 'FFT_Rmax_first_18000'] = realFFT[:18000].max()
    X.loc[seg_id, 'FFT_Rmin_first_18000'] = realFFT[:18000].min()

    del xcz
    del zc

    b, a = des_bw_filter_lp(cutoff=2500)
    xc0 = sg.lfilter(b, a, xcdm)

    b, a = des_bw_filter_bp(low=2500, high=5000)
    xc1 = sg.lfilter(b, a, xcdm)

    b, a = des_bw_filter_bp(low=5000, high=7500)
    xc2 = sg.lfilter(b, a, xcdm)

    b, a = des_bw_filter_bp(low=7500, high=10000)
    xc3 = sg.lfilter(b, a, xcdm)

    b, a = des_bw_filter_bp(low=10000, high=12500)
    xc4 = sg.lfilter(b, a, xcdm)

    b, a = des_bw_filter_bp(low=12500, high=15000)
    xc5 = sg.lfilter(b, a, xcdm)

    b, a = des_bw_filter_bp(low=15000, high=17500)
    xc6 = sg.lfilter(b, a, xcdm)

    b, a = des_bw_filter_bp(low=17500, high=20000)
    xc7 = sg.lfilter(b, a, xcdm)

    b, a = des_bw_filter_hp(cutoff=20000)
    xc8 = sg.lfilter(b, a, xcdm)

    sigs = [xc, pd.Series(xc0), pd.Series(xc1), pd.Series(xc2), pd.Series(xc3),
            pd.Series(xc4), pd.Series(xc5), pd.Series(xc6), pd.Series(xc7), pd.Series(xc8)]

    for i, sig in enumerate(sigs):
        X.loc[seg_id, 'mean_%d' % i] = sig.mean()
        X.loc[seg_id, 'std_%d' % i] = sig.std()
        X.loc[seg_id, 'max_%d' % i] = sig.max()
        X.loc[seg_id, 'min_%d' % i] = sig.min()

        X.loc[seg_id, 'mean_change_abs_%d' % i] = np.mean(np.diff(sig))
        X.loc[seg_id, 'mean_change_rate_%d' % i] = calc_mean_change_rate(sig)
        X.loc[seg_id, 'abs_max_%d' % i] = np.abs(sig).max()

        X.loc[seg_id, 'std_first_50000_%d' % i] = sig[:50000].std()
        X.loc[seg_id, 'std_last_50000_%d' % i] = sig[-50000:].std()
        X.loc[seg_id, 'std_first_10000_%d' % i] = sig[:10000].std()
        X.loc[seg_id, 'std_last_10000_%d' % i] = sig[-10000:].std()

        X.loc[seg_id, 'avg_first_50000_%d' % i] = sig[:50000].mean()
        X.loc[seg_id, 'avg_last_50000_%d' % i] = sig[-50000:].mean()
        X.loc[seg_id, 'avg_first_10000_%d' % i] = sig[:10000].mean()
        X.loc[seg_id, 'avg_last_10000_%d' % i] = sig[-10000:].mean()

        X.loc[seg_id, 'min_first_50000_%d' % i] = sig[:50000].min()
        X.loc[seg_id, 'min_last_50000_%d' % i] = sig[-50000:].min()
        X.loc[seg_id, 'min_first_10000_%d' % i] = sig[:10000].min()
        X.loc[seg_id, 'min_last_10000_%d' % i] = sig[-10000:].min()

        X.loc[seg_id, 'max_first_50000_%d' % i] = sig[:50000].max()
        X.loc[seg_id, 'max_last_50000_%d' % i] = sig[-50000:].max()
        X.loc[seg_id, 'max_first_10000_%d' % i] = sig[:10000].max()
        X.loc[seg_id, 'max_last_10000_%d' % i] = sig[-10000:].max()

        X.loc[seg_id, 'max_to_min_%d' % i] = sig.max() / np.abs(sig.min())
        X.loc[seg_id, 'max_to_min_diff_%d' % i] = sig.max() - np.abs(sig.min())
        X.loc[seg_id, 'count_big_%d' % i] = len(sig[np.abs(sig) > 500])

        X.loc[seg_id, 'mean_change_rate_first_50000_%d' % i] = calc_mean_change_rate(sig[:50000])
        X.loc[seg_id, 'mean_change_rate_last_50000_%d' % i] = calc_mean_change_rate(sig[-50000:])
        X.loc[seg_id, 'mean_change_rate_first_10000_%d' % i] = calc_mean_change_rate(sig[:10000])
        X.loc[seg_id, 'mean_change_rate_last_10000_%d' % i] = calc_mean_change_rate(sig[-10000:])

        X.loc[seg_id, 'q95_%d' % i] = np.quantile(sig, 0.95)
        X.loc[seg_id, 'q99_%d' % i] = np.quantile(sig, 0.99)
        X.loc[seg_id, 'q05_%d' % i] = np.quantile(sig, 0.05)
        X.loc[seg_id, 'q01_%d' % i] = np.quantile(sig, 0.01)

        X.loc[seg_id, 'abs_q95_%d' % i] = np.quantile(np.abs(sig), 0.95)
        X.loc[seg_id, 'abs_q99_%d' % i] = np.quantile(np.abs(sig), 0.99)
        X.loc[seg_id, 'abs_q05_%d' % i] = np.quantile(np.abs(sig), 0.05)
        X.loc[seg_id, 'abs_q01_%d' % i] = np.quantile(np.abs(sig), 0.01)

        X.loc[seg_id, 'trend_%d' % i] = add_trend_feature(sig)
        X.loc[seg_id, 'abs_trend_%d' % i] = add_trend_feature(sig, abs_values=True)
        X.loc[seg_id, 'abs_mean_%d' % i] = np.abs(sig).mean()
        X.loc[seg_id, 'abs_std_%d' % i] = np.abs(sig).std()

        X.loc[seg_id, 'mad_%d' % i] = sig.mad()
        X.loc[seg_id, 'kurt_%d' % i] = sig.kurtosis()
        X.loc[seg_id, 'skew_%d' % i] = sig.skew()
        X.loc[seg_id, 'med_%d' % i] = sig.median()

        X.loc[seg_id, 'Hilbert_mean_%d' % i] = np.abs(hilbert(sig)).mean()
        X.loc[seg_id, 'Hann_window_mean'] = (convolve(xc, hann(150), mode='same') / sum(hann(150))).mean()

        X.loc[seg_id, 'classic_sta_lta1_mean_%d' % i] = classic_sta_lta(sig, 500, 10000).mean()
        X.loc[seg_id, 'classic_sta_lta2_mean_%d' % i] = classic_sta_lta(sig, 5000, 100000).mean()
        X.loc[seg_id, 'classic_sta_lta3_mean_%d' % i] = classic_sta_lta(sig, 3333, 6666).mean()
        X.loc[seg_id, 'classic_sta_lta4_mean_%d' % i] = classic_sta_lta(sig, 10000, 25000).mean()

        X.loc[seg_id, 'Moving_average_700_mean_%d' % i] = sig.rolling(window=700).mean().mean(skipna=True)
        X.loc[seg_id, 'Moving_average_1500_mean_%d' % i] = sig.rolling(window=1500).mean().mean(skipna=True)
        X.loc[seg_id, 'Moving_average_3000_mean_%d' % i] = sig.rolling(window=3000).mean().mean(skipna=True)
        X.loc[seg_id, 'Moving_average_6000_mean_%d' % i] = sig.rolling(window=6000).mean().mean(skipna=True)

        ewma = pd.Series.ewm
        X.loc[seg_id, 'exp_Moving_average_300_mean_%d' % i] = ewma(sig, span=300).mean().mean(skipna=True)
        X.loc[seg_id, 'exp_Moving_average_3000_mean_%d' % i] = ewma(sig, span=3000).mean().mean(skipna=True)
        X.loc[seg_id, 'exp_Moving_average_30000_mean_%d' % i] = ewma(sig, span=30000).mean().mean(skipna=True)

        no_of_std = 3
        X.loc[seg_id, 'MA_700MA_std_mean_%d' % i] = sig.rolling(window=700).std().mean()
        X.loc[seg_id, 'MA_700MA_BB_high_mean_%d' % i] = (
                X.loc[seg_id, 'Moving_average_700_mean_%d' % i] + no_of_std * X.loc[
            seg_id, 'MA_700MA_std_mean_%d' % i]).mean()
        X.loc[seg_id, 'MA_700MA_BB_low_mean_%d' % i] = (
                X.loc[seg_id, 'Moving_average_700_mean_%d' % i] - no_of_std * X.loc[
            seg_id, 'MA_700MA_std_mean_%d' % i]).mean()
        X.loc[seg_id, 'MA_400MA_std_mean_%d' % i] = sig.rolling(window=400).std().mean()
        X.loc[seg_id, 'MA_400MA_BB_high_mean_%d' % i] = (
                X.loc[seg_id, 'Moving_average_700_mean_%d' % i] + no_of_std * X.loc[
            seg_id, 'MA_400MA_std_mean_%d' % i]).mean()
        X.loc[seg_id, 'MA_400MA_BB_low_mean_%d' % i] = (
                X.loc[seg_id, 'Moving_average_700_mean_%d' % i] - no_of_std * X.loc[
            seg_id, 'MA_400MA_std_mean_%d' % i]).mean()
        X.loc[seg_id, 'MA_1000MA_std_mean_%d' % i] = sig.rolling(window=1000).std().mean()

        X.loc[seg_id, 'iqr_%d' % i] = np.subtract(*np.percentile(sig, [75, 25]))
        X.loc[seg_id, 'q999_%d' % i] = np.quantile(sig, 0.999)
        X.loc[seg_id, 'q001_%d' % i] = np.quantile(sig, 0.001)
        X.loc[seg_id, 'ave10_%d' % i] = stats.trim_mean(sig, 0.1)

        X.loc[seg_id, 'num_peaks_10_%d' % i] = feature_calculators.number_peaks(sig, 10)
        X.loc[seg_id, 'cid_ce_1_%d' % i] = feature_calculators.cid_ce(sig, 1)  # time series complexity
        X.loc[seg_id, 'count_1000_0_%d' % i] = feature_calculators.range_count(sig, -1000, 0)
        X.loc[seg_id, 'binned_entropy_5_%d' % i] = feature_calculators.binned_entropy(sig, 5)
        X.loc[seg_id, 'binned_entropy_15_%d' % i] = feature_calculators.binned_entropy(sig, 15)

    # sliding window is a kind of filter, so this code is out of the cycle of band pass
    for windows in [10, 100, 1000]:
        x_roll_std = xc.rolling(windows).std().dropna()
        x_roll_mean = xc.rolling(windows).mean().dropna()

        X.loc[seg_id, 'ave_roll_std_' + str(windows)] = x_roll_std.mean()
        X.loc[seg_id, 'std_roll_std_' + str(windows)] = x_roll_std.std()
        X.loc[seg_id, 'max_roll_std_' + str(windows)] = x_roll_std.max()
        X.loc[seg_id, 'min_roll_std_' + str(windows)] = x_roll_std.min()
        X.loc[seg_id, 'q01_roll_std_' + str(windows)] = np.quantile(x_roll_std, 0.01)
        X.loc[seg_id, 'q05_roll_std_' + str(windows)] = np.quantile(x_roll_std, 0.05)
        X.loc[seg_id, 'q95_roll_std_' + str(windows)] = np.quantile(x_roll_std, 0.95)
        X.loc[seg_id, 'q99_roll_std_' + str(windows)] = np.quantile(x_roll_std, 0.99)
        X.loc[seg_id, 'av_change_abs_roll_std_' + str(windows)] = np.mean(np.diff(x_roll_std))
        X.loc[seg_id, 'av_change_rate_roll_std_' + str(windows)] = calc_mean_change_rate(x_roll_std)
        X.loc[seg_id, 'abs_max_roll_std_' + str(windows)] = np.abs(x_roll_std).max()

        X.loc[seg_id, 'ave_roll_mean_' + str(windows)] = x_roll_mean.mean()
        X.loc[seg_id, 'std_roll_mean_' + str(windows)] = x_roll_mean.std()
        X.loc[seg_id, 'max_roll_mean_' + str(windows)] = x_roll_mean.max()
        X.loc[seg_id, 'min_roll_mean_' + str(windows)] = x_roll_mean.min()
        X.loc[seg_id, 'q01_roll_mean_' + str(windows)] = np.quantile(x_roll_mean, 0.01)
        X.loc[seg_id, 'q05_roll_mean_' + str(windows)] = np.quantile(x_roll_mean, 0.05)
        X.loc[seg_id, 'q95_roll_mean_' + str(windows)] = np.quantile(x_roll_mean, 0.95)
        X.loc[seg_id, 'q99_roll_mean_' + str(windows)] = np.quantile(x_roll_mean, 0.99)
        X.loc[seg_id, 'av_change_abs_roll_mean_' + str(windows)] = np.mean(np.diff(x_roll_mean))
        X.loc[seg_id, 'av_change_rate_roll_mean_' + str(windows)] = calc_mean_change_rate(x_roll_mean)
        X.loc[seg_id, 'abs_max_roll_mean_' + str(windows)] = np.abs(x_roll_mean).max()

    return X
示例#15
0
def CIDCELag5(fragment):
    return fc.cid_ce(fragment,5)
示例#16
0
def CIDCELag7(fragment):
    return fc.cid_ce(fragment,7)
示例#17
0
# 3. `last_location_of_maximum`: locates the last occurrence of the maximum value in the time series
# 4. `skewness`: the Fisher-Pearson skewness of the time series
# 5. `sample_entropy`: the sample entropy of the time series
#
# All of these will be calculated for each operational setting and each sensor measurement giving us 5 new columns for each of the 29 original features (145 total features).

# In[ ]:

from tsfresh.feature_extraction.feature_calculators import (
    cid_ce, number_peaks, last_location_of_maximum, skewness, sample_entropy)

# To avoid the issue of passing multiple functions to `agg` with the same name `lambda`, we have to create lambda functions and then give them custom names. `cid_ce` and `number_peaks` both have required arguments but the other functions only need a time-series.

# In[ ]:

cid_ce_func = lambda x: cid_ce(x, normalize=False)
cid_ce_func.__name__ = 'cid_ce'

n_peaks = lambda x: number_peaks(x, n=5)
n_peaks.__name__ = 'number_peaks'

# Apply the five operations
ts_values = train_obs.drop(
    columns=['time_in_cycles']).groupby('engine_no').agg([
        cid_ce_func, n_peaks, last_location_of_maximum, skewness,
        sample_entropy
    ])
ts_values.head()

# Below we rename the columns.
def complexity(x):
    return fc.cid_ce(x, True)
示例#19
0
    def features(self, x, y, seg_id):
        feature_dict = dict()
        feature_dict['target'] = y
        feature_dict['seg_id'] = seg_id

        # create features here
        # numpy
        feature_dict['mean'] = np.mean(x)
        feature_dict['max'] = np.max(x)
        feature_dict['min'] = np.min(x)
        feature_dict['std'] = np.std(x)
        feature_dict['var'] = np.var(x)
        feature_dict['ptp'] = np.ptp(x)
        feature_dict['percentile_10'] = np.percentile(x, 10)
        feature_dict['percentile_20'] = np.percentile(x, 20)
        feature_dict['percentile_30'] = np.percentile(x, 30)
        feature_dict['percentile_40'] = np.percentile(x, 40)
        feature_dict['percentile_50'] = np.percentile(x, 50)
        feature_dict['percentile_60'] = np.percentile(x, 60)
        feature_dict['percentile_70'] = np.percentile(x, 70)
        feature_dict['percentile_80'] = np.percentile(x, 80)
        feature_dict['percentile_90'] = np.percentile(x, 90)

        # scipy
        feature_dict['skew'] = sp.stats.skew(x)
        feature_dict['kurtosis'] = sp.stats.kurtosis(x)
        feature_dict['kstat_1'] = sp.stats.kstat(x, 1)
        feature_dict['kstat_2'] = sp.stats.kstat(x, 2)
        feature_dict['kstat_3'] = sp.stats.kstat(x, 3)
        feature_dict['kstat_4'] = sp.stats.kstat(x, 4)
        feature_dict['moment_1'] = sp.stats.moment(x, 1)
        feature_dict['moment_2'] = sp.stats.moment(x, 2)
        feature_dict['moment_3'] = sp.stats.moment(x, 3)
        feature_dict['moment_4'] = sp.stats.moment(x, 4)
        
        feature_dict['abs_energy'] = feature_calculators.abs_energy(x)
        feature_dict['abs_sum_of_changes'] = feature_calculators.absolute_sum_of_changes(x)
        feature_dict['count_above_mean'] = feature_calculators.count_above_mean(x)
        feature_dict['count_below_mean'] = feature_calculators.count_below_mean(x)
        feature_dict['mean_abs_change'] = feature_calculators.mean_abs_change(x)
        feature_dict['mean_change'] = feature_calculators.mean_change(x)
        feature_dict['var_larger_than_std_dev'] = feature_calculators.variance_larger_than_standard_deviation(x)
        feature_dict['range_minf_m4000'] = feature_calculators.range_count(x, -np.inf, -4000)
        feature_dict['range_m4000_m3000'] = feature_calculators.range_count(x, -4000, -3000)
        feature_dict['range_m3000_m2000'] = feature_calculators.range_count(x, -3000, -2000)
        feature_dict['range_m2000_m1000'] = feature_calculators.range_count(x, -2000, -1000)
        feature_dict['range_m1000_0'] = feature_calculators.range_count(x, -1000, 0)
        feature_dict['range_0_p1000'] = feature_calculators.range_count(x, 0, 1000)
        feature_dict['range_p1000_p2000'] = feature_calculators.range_count(x, 1000, 2000)
        feature_dict['range_p2000_p3000'] = feature_calculators.range_count(x, 2000, 3000)
        feature_dict['range_p3000_p4000'] = feature_calculators.range_count(x, 3000, 4000)
        feature_dict['range_p4000_pinf'] = feature_calculators.range_count(x, 4000, np.inf)

        feature_dict['ratio_unique_values'] = feature_calculators.ratio_value_number_to_time_series_length(x)
        feature_dict['first_loc_min'] = feature_calculators.first_location_of_minimum(x)
        feature_dict['first_loc_max'] = feature_calculators.first_location_of_maximum(x)
        feature_dict['last_loc_min'] = feature_calculators.last_location_of_minimum(x)
        feature_dict['last_loc_max'] = feature_calculators.last_location_of_maximum(x)
        feature_dict['time_rev_asym_stat_10'] = feature_calculators.time_reversal_asymmetry_statistic(x, 10)
        feature_dict['time_rev_asym_stat_100'] = feature_calculators.time_reversal_asymmetry_statistic(x, 100)
        feature_dict['time_rev_asym_stat_1000'] = feature_calculators.time_reversal_asymmetry_statistic(x, 1000)
        feature_dict['autocorrelation_5'] = feature_calculators.autocorrelation(x, 5)
        feature_dict['autocorrelation_10'] = feature_calculators.autocorrelation(x, 10)
        feature_dict['autocorrelation_50'] = feature_calculators.autocorrelation(x, 50)
        feature_dict['autocorrelation_100'] = feature_calculators.autocorrelation(x, 100)
        feature_dict['autocorrelation_1000'] = feature_calculators.autocorrelation(x, 1000)
        feature_dict['c3_5'] = feature_calculators.c3(x, 5)
        feature_dict['c3_10'] = feature_calculators.c3(x, 10)
        feature_dict['c3_100'] = feature_calculators.c3(x, 100)
        feature_dict['fft_1_real'] = list(feature_calculators.fft_coefficient(x, [{'coeff': 1, 'attr': 'real'}]))[0][1]
        feature_dict['fft_1_imag'] = list(feature_calculators.fft_coefficient(x, [{'coeff': 1, 'attr': 'imag'}]))[0][1]
        feature_dict['fft_1_ang'] = list(feature_calculators.fft_coefficient(x, [{'coeff': 1, 'attr': 'angle'}]))[0][1]
        feature_dict['fft_2_real'] = list(feature_calculators.fft_coefficient(x, [{'coeff': 2, 'attr': 'real'}]))[0][1]
        feature_dict['fft_2_imag'] = list(feature_calculators.fft_coefficient(x, [{'coeff': 2, 'attr': 'imag'}]))[0][1]
        feature_dict['fft_2_ang'] = list(feature_calculators.fft_coefficient(x, [{'coeff': 2, 'attr': 'angle'}]))[0][1]
        feature_dict['fft_3_real'] = list(feature_calculators.fft_coefficient(x, [{'coeff': 3, 'attr': 'real'}]))[0][1]
        feature_dict['fft_3_imag'] = list(feature_calculators.fft_coefficient(x, [{'coeff': 3, 'attr': 'imag'}]))[0][1]
        feature_dict['fft_3_ang'] = list(feature_calculators.fft_coefficient(x, [{'coeff': 3, 'attr': 'angle'}]))[0][1]
        feature_dict['long_strk_above_mean'] = feature_calculators.longest_strike_above_mean(x)
        feature_dict['long_strk_below_mean'] = feature_calculators.longest_strike_below_mean(x)
        feature_dict['cid_ce_0'] = feature_calculators.cid_ce(x, 0)
        feature_dict['cid_ce_1'] = feature_calculators.cid_ce(x, 1)
        feature_dict['binned_entropy_5'] = feature_calculators.binned_entropy(x, 5)
        feature_dict['binned_entropy_10'] = feature_calculators.binned_entropy(x, 10)
        feature_dict['binned_entropy_20'] = feature_calculators.binned_entropy(x, 20)
        feature_dict['binned_entropy_50'] = feature_calculators.binned_entropy(x, 50)
        feature_dict['binned_entropy_80'] = feature_calculators.binned_entropy(x, 80)
        feature_dict['binned_entropy_100'] = feature_calculators.binned_entropy(x, 100)

        feature_dict['num_crossing_0'] = feature_calculators.number_crossing_m(x, 0)
        feature_dict['num_peaks_10'] = feature_calculators.number_peaks(x, 10)
        feature_dict['num_peaks_50'] = feature_calculators.number_peaks(x, 50)
        feature_dict['num_peaks_100'] = feature_calculators.number_peaks(x, 100)
        feature_dict['num_peaks_500'] = feature_calculators.number_peaks(x, 500)

        feature_dict['spkt_welch_density_1'] = list(feature_calculators.spkt_welch_density(x, [{'coeff': 1}]))[0][1]
        feature_dict['spkt_welch_density_10'] = list(feature_calculators.spkt_welch_density(x, [{'coeff': 10}]))[0][1]
        feature_dict['spkt_welch_density_50'] = list(feature_calculators.spkt_welch_density(x, [{'coeff': 50}]))[0][1]
        feature_dict['spkt_welch_density_100'] = list(feature_calculators.spkt_welch_density(x, [{'coeff': 100}]))[0][1]

        feature_dict['time_rev_asym_stat_1'] = feature_calculators.time_reversal_asymmetry_statistic(x, 1)
        feature_dict['time_rev_asym_stat_10'] = feature_calculators.time_reversal_asymmetry_statistic(x, 10)
        feature_dict['time_rev_asym_stat_100'] = feature_calculators.time_reversal_asymmetry_statistic(x, 100)        

        return feature_dict