def fft_coefficient(self, x, param=None): """ As in tsfresh `fft_coefficient <https://github.com/blue-yonder/tsfresh/blob/master/tsfresh/feature_extraction/\ feature_calculators.py#L852>`_ \ Calculates the fourier coefficients of the one-dimensional discrete Fourier Transform for real input by fast \ fourier transformation algorithm .. math:: A_k = \\sum_{m=0}^{n-1} a_m \\exp \\left \\{ -2 \\pi i \\frac{m k}{n} \\right \\}, \\qquad k = 0, \\ldots , n-1. The resulting coefficients will be complex, this feature calculator can return the real part (attr=="real"), \ the imaginary part (attr=="imag), the absolute value (attr=""abs) and the angle in degrees (attr=="angle). :param x: the time series to calculate the feature of :type x: pandas.Series :param param: contains dictionaries {"coeff": x, "attr": s} with x int and x >= 0, s str and in ["real", "imag"\ , "abs", "angle"] :type param: list :return: the different feature values :rtype: pandas.Series """ if param is None: param = [{'attr': 'abs', 'coeff': 44}, {'attr': 'abs', 'coeff': 63}, {'attr': 'abs', 'coeff': 0}, {'attr': 'real', 'coeff': 0}, {'attr': 'real', 'coeff': 23}] _fft_coef = feature_calculators.fft_coefficient(x, param) logging.debug("fft coefficient by tsfresh calculated") return list(_fft_coef)
def compute_fft_features_block(xc, seg_id, X): xcdm = xc - np.mean(xc) b, a = des_bw_filter_lp(cutoff=18000) xcz = sg.lfilter(b, a, xcdm) zc = np.fft.fft(xcz) zc = zc[:MAX_FREQ_IDX] # FFT stats realFFT = np.real(zc) imagFFT = np.imag(zc) magFFT = np.abs(zc) phzFFT = np.angle(zc) phzFFT[phzFFT == -np.inf] = -np.pi / 2.0 phzFFT[phzFFT == np.inf] = np.pi / 2.0 phzFFT = np.nan_to_num(phzFFT) for freq in [x for x in range(0, MAX_FREQ_IDX, FREQ_STEP)]: X.loc[seg_id, 'FFT_Mag_01q%d' % freq] = np.quantile(magFFT[freq: freq + FREQ_STEP], 0.01) X.loc[seg_id, 'FFT_Mag_10q%d' % freq] = np.quantile(magFFT[freq: freq + FREQ_STEP], 0.1) X.loc[seg_id, 'FFT_Mag_90q%d' % freq] = np.quantile(magFFT[freq: freq + FREQ_STEP], 0.9) X.loc[seg_id, 'FFT_Mag_99q%d' % freq] = np.quantile(magFFT[freq: freq + FREQ_STEP], 0.99) X.loc[seg_id, 'FFT_Mag_mean%d' % freq] = np.mean(magFFT[freq: freq + FREQ_STEP]) X.loc[seg_id, 'FFT_Mag_std%d' % freq] = np.std(magFFT[freq: freq + FREQ_STEP]) X.loc[seg_id, 'FFT_Mag_max%d' % freq] = np.max(magFFT[freq: freq + FREQ_STEP]) X.loc[seg_id, 'FFT_Phz_mean%d' % freq] = np.mean(phzFFT[freq: freq + FREQ_STEP]) X.loc[seg_id, 'FFT_Phz_std%d' % freq] = np.std(phzFFT[freq: freq + FREQ_STEP]) X.loc[seg_id, 'FFT_Rmean'] = realFFT.mean() X.loc[seg_id, 'FFT_Rstd'] = realFFT.std() X.loc[seg_id, 'FFT_Rmax'] = realFFT.max() X.loc[seg_id, 'FFT_Rmin'] = realFFT.min() X.loc[seg_id, 'FFT_Imean'] = imagFFT.mean() X.loc[seg_id, 'FFT_Istd'] = imagFFT.std() X.loc[seg_id, 'FFT_Imax'] = imagFFT.max() X.loc[seg_id, 'FFT_Imin'] = imagFFT.min() X.loc[seg_id, 'FFT_Rmean_first_6000'] = realFFT[:6000].mean() X.loc[seg_id, 'FFT_Rstd_first_6000'] = realFFT[:6000].std() X.loc[seg_id, 'FFT_Rmax_first_6000'] = realFFT[:6000].max() X.loc[seg_id, 'FFT_Rmin_first_6000'] = realFFT[:6000].min() X.loc[seg_id, 'FFT_Rmean_first_18000'] = realFFT[:18000].mean() X.loc[seg_id, 'FFT_Rstd_first_18000'] = realFFT[:18000].std() X.loc[seg_id, 'FFT_Rmax_first_18000'] = realFFT[:18000].max() X.loc[seg_id, 'FFT_Rmin_first_18000'] = realFFT[:18000].min() X.loc[seg_id, 'FFT_Rmean_last_5000'] = realFFT[-5000:].mean() X.loc[seg_id, 'FFT_Rstd_last_5000'] = realFFT[-5000:].std() X.loc[seg_id, 'FFT_Rmax_last_5000'] = realFFT[-5000:].max() X.loc[seg_id, 'FFT_Rmin_last_5000'] = realFFT[-5000:].min() X.loc[seg_id, 'FFT_Rmean_last_15000'] = realFFT[-15000:].mean() X.loc[seg_id, 'FFT_Rstd_last_15000'] = realFFT[-15000:].std() X.loc[seg_id, 'FFT_Rmax_last_15000'] = realFFT[-15000:].max() X.loc[seg_id, 'FFT_Rmin_last_15000'] = realFFT[-15000:].min() for coeff, attr in product([1, 2, 3, 4, 5], ['real', 'imag', 'angle']): X.loc[seg_id, f'fft_{coeff}_{attr}'] = list(feature_calculators.fft_coefficient(xc, [{'coeff': coeff, 'attr': attr}]))[0][1]
def fft(self): # get FFT coefficient values, return matrix f1 = [ abs( list( tcal.fft_coefficient(self.data[i, :], [{ "coeff": 11, "attr": "real" }]))[0][1]) for i in range(len(self.data)) ] f2 = [ abs( list( tcal.fft_coefficient(self.data[i, :], [{ "coeff": 12, "attr": "real" }]))[0][1]) for i in range(len(self.data)) ] f3 = [ abs( list( tcal.fft_coefficient(self.data[i, :], [{ "coeff": 13, "attr": "real" }]))[0][1]) for i in range(len(self.data)) ] f4 = [ abs( list( tcal.fft_coefficient(self.data[i, :], [{ "coeff": 14, "attr": "real" }]))[0][1]) for i in range(len(self.data)) ] f5 = [ abs( list( tcal.fft_coefficient(self.data[i, :], [{ "coeff": 15, "attr": "real" }]))[0][1]) for i in range(len(self.data)) ] return np.array([f1, f2, f3, f4, f5]).T
def fft_ft(dt): from tsfresh.feature_extraction.feature_calculators import fft_coefficient params = [] for i in range(10): for j in ['real', 'imag', 'abs', 'angle']: params.append({'coeff': i, 'attr': j}) ft = fft_coefficient(dt, params) return {i[0]: i[1] for i in ft}
def fft(chunk, coeff, attr): """Fourier coefficients of the one-dimensional discrete Fourier Transform for real input.""" return list(fft_coefficient(chunk, [{"coeff": coeff, "attr": attr}]))[0][1]
def function(x): param = [{'coeff': self.coeff, 'attr': self.attr}] return list(fft_coefficient(x, param=param))[0][1]
def features(self, x, prefix): feature_dict = dict() # create features here # numpy feature_dict[prefix + '_' + 'mean'] = np.mean(x) feature_dict[prefix + '_' + 'max'] = np.max(x) feature_dict[prefix + '_' + 'min'] = np.min(x) feature_dict[prefix + '_' + 'std'] = np.std(x) feature_dict[prefix + '_' + 'var'] = np.var(x) feature_dict[prefix + '_' + 'ptp'] = np.ptp(x) feature_dict[prefix + '_' + 'percentile_10'] = np.percentile(x, 10) feature_dict[prefix + '_' + 'percentile_20'] = np.percentile(x, 20) feature_dict[prefix + '_' + 'percentile_30'] = np.percentile(x, 30) feature_dict[prefix + '_' + 'percentile_40'] = np.percentile(x, 40) feature_dict[prefix + '_' + 'percentile_50'] = np.percentile(x, 50) feature_dict[prefix + '_' + 'percentile_60'] = np.percentile(x, 60) feature_dict[prefix + '_' + 'percentile_70'] = np.percentile(x, 70) feature_dict[prefix + '_' + 'percentile_80'] = np.percentile(x, 80) feature_dict[prefix + '_' + 'percentile_90'] = np.percentile(x, 90) # scipy feature_dict[prefix + '_' + 'skew'] = sp.stats.skew(x) feature_dict[prefix + '_' + 'kurtosis'] = sp.stats.kurtosis(x) feature_dict[prefix + '_' + 'kstat_1'] = sp.stats.kstat(x, 1) feature_dict[prefix + '_' + 'kstat_2'] = sp.stats.kstat(x, 2) feature_dict[prefix + '_' + 'kstat_3'] = sp.stats.kstat(x, 3) feature_dict[prefix + '_' + 'kstat_4'] = sp.stats.kstat(x, 4) feature_dict[prefix + '_' + 'moment_1'] = sp.stats.moment(x, 1) feature_dict[prefix + '_' + 'moment_2'] = sp.stats.moment(x, 2) feature_dict[prefix + '_' + 'moment_3'] = sp.stats.moment(x, 3) feature_dict[prefix + '_' + 'moment_4'] = sp.stats.moment(x, 4) # tsfresh feature_dict[prefix + '_' + 'abs_energy'] = feature_calculators.abs_energy(x) feature_dict[ prefix + '_' + 'abs_sum_of_changes'] = feature_calculators.absolute_sum_of_changes( x) feature_dict[ prefix + '_' + 'count_above_mean'] = feature_calculators.count_above_mean(x) feature_dict[ prefix + '_' + 'count_below_mean'] = feature_calculators.count_below_mean(x) feature_dict[prefix + '_' + 'mean_abs_change'] = feature_calculators.mean_abs_change( x) feature_dict[prefix + '_' + 'mean_change'] = feature_calculators.mean_change(x) feature_dict[ prefix + '_' + 'var_larger_than_std_dev'] = feature_calculators.variance_larger_than_standard_deviation( x) feature_dict[prefix + '_' + 'range_minf_m4000'] = feature_calculators.range_count( x, -np.inf, -4000) feature_dict[prefix + '_' + 'range_m4000_m3000'] = feature_calculators.range_count( x, -4000, -3000) feature_dict[prefix + '_' + 'range_m3000_m2000'] = feature_calculators.range_count( x, -3000, -2000) feature_dict[prefix + '_' + 'range_m2000_m1000'] = feature_calculators.range_count( x, -2000, -1000) feature_dict[prefix + '_' + 'range_m1000_0'] = feature_calculators.range_count( x, -1000, 0) feature_dict[prefix + '_' + 'range_0_p1000'] = feature_calculators.range_count( x, 0, 1000) feature_dict[prefix + '_' + 'range_p1000_p2000'] = feature_calculators.range_count( x, 1000, 2000) feature_dict[prefix + '_' + 'range_p2000_p3000'] = feature_calculators.range_count( x, 2000, 3000) feature_dict[prefix + '_' + 'range_p3000_p4000'] = feature_calculators.range_count( x, 3000, 4000) feature_dict[prefix + '_' + 'range_p4000_pinf'] = feature_calculators.range_count( x, 4000, np.inf) feature_dict[ prefix + '_' + 'ratio_unique_values'] = feature_calculators.ratio_value_number_to_time_series_length( x) feature_dict[ prefix + '_' + 'first_loc_min'] = feature_calculators.first_location_of_minimum(x) feature_dict[ prefix + '_' + 'first_loc_max'] = feature_calculators.first_location_of_maximum(x) feature_dict[ prefix + '_' + 'last_loc_min'] = feature_calculators.last_location_of_minimum(x) feature_dict[ prefix + '_' + 'last_loc_max'] = feature_calculators.last_location_of_maximum(x) feature_dict[ prefix + '_' + 'time_rev_asym_stat_10'] = feature_calculators.time_reversal_asymmetry_statistic( x, 10) feature_dict[ prefix + '_' + 'time_rev_asym_stat_100'] = feature_calculators.time_reversal_asymmetry_statistic( x, 100) feature_dict[ prefix + '_' + 'time_rev_asym_stat_1000'] = feature_calculators.time_reversal_asymmetry_statistic( x, 1000) feature_dict[ prefix + '_' + 'autocorrelation_1'] = feature_calculators.autocorrelation(x, 1) feature_dict[ prefix + '_' + 'autocorrelation_2'] = feature_calculators.autocorrelation(x, 2) feature_dict[ prefix + '_' + 'autocorrelation_3'] = feature_calculators.autocorrelation(x, 3) feature_dict[ prefix + '_' + 'autocorrelation_4'] = feature_calculators.autocorrelation(x, 4) feature_dict[ prefix + '_' + 'autocorrelation_5'] = feature_calculators.autocorrelation(x, 5) feature_dict[ prefix + '_' + 'autocorrelation_6'] = feature_calculators.autocorrelation(x, 6) feature_dict[ prefix + '_' + 'autocorrelation_7'] = feature_calculators.autocorrelation(x, 7) feature_dict[ prefix + '_' + 'autocorrelation_8'] = feature_calculators.autocorrelation(x, 8) feature_dict[ prefix + '_' + 'autocorrelation_9'] = feature_calculators.autocorrelation(x, 9) feature_dict[ prefix + '_' + 'autocorrelation_10'] = feature_calculators.autocorrelation(x, 10) feature_dict[ prefix + '_' + 'autocorrelation_50'] = feature_calculators.autocorrelation(x, 50) feature_dict[ prefix + '_' + 'autocorrelation_100'] = feature_calculators.autocorrelation( x, 100) feature_dict[ prefix + '_' + 'autocorrelation_1000'] = feature_calculators.autocorrelation( x, 1000) feature_dict[prefix + '_' + 'c3_1'] = feature_calculators.c3(x, 1) feature_dict[prefix + '_' + 'c3_2'] = feature_calculators.c3(x, 2) feature_dict[prefix + '_' + 'c3_3'] = feature_calculators.c3(x, 3) feature_dict[prefix + '_' + 'c3_4'] = feature_calculators.c3(x, 4) feature_dict[prefix + '_' + 'c3_5'] = feature_calculators.c3(x, 5) feature_dict[prefix + '_' + 'c3_10'] = feature_calculators.c3(x, 10) feature_dict[prefix + '_' + 'c3_100'] = feature_calculators.c3(x, 100) for c in range(1, 34): feature_dict[prefix + '_' + 'fft_{0}_real'.format(c)] = list( feature_calculators.fft_coefficient(x, [{ 'coeff': c, 'attr': 'real' }]))[0][1] feature_dict[prefix + '_' + 'fft_{0}_imag'.format(c)] = list( feature_calculators.fft_coefficient(x, [{ 'coeff': c, 'attr': 'imag' }]))[0][1] feature_dict[prefix + '_' + 'fft_{0}_ang'.format(c)] = list( feature_calculators.fft_coefficient(x, [{ 'coeff': c, 'attr': 'angle' }]))[0][1] feature_dict[ prefix + '_' + 'long_strk_above_mean'] = feature_calculators.longest_strike_above_mean( x) feature_dict[ prefix + '_' + 'long_strk_below_mean'] = feature_calculators.longest_strike_below_mean( x) feature_dict[prefix + '_' + 'cid_ce_0'] = feature_calculators.cid_ce( x, 0) feature_dict[prefix + '_' + 'cid_ce_1'] = feature_calculators.cid_ce( x, 1) feature_dict[prefix + '_' + 'binned_entropy_5'] = feature_calculators.binned_entropy( x, 5) feature_dict[prefix + '_' + 'binned_entropy_10'] = feature_calculators.binned_entropy( x, 10) feature_dict[prefix + '_' + 'binned_entropy_20'] = feature_calculators.binned_entropy( x, 20) feature_dict[prefix + '_' + 'binned_entropy_50'] = feature_calculators.binned_entropy( x, 50) feature_dict[prefix + '_' + 'binned_entropy_80'] = feature_calculators.binned_entropy( x, 80) feature_dict[ prefix + '_' + 'binned_entropy_100'] = feature_calculators.binned_entropy(x, 100) feature_dict[prefix + '_' + 'num_crossing_0'] = feature_calculators.number_crossing_m( x, 0) feature_dict[prefix + '_' + 'num_peaks_1'] = feature_calculators.number_peaks(x, 1) feature_dict[prefix + '_' + 'num_peaks_3'] = feature_calculators.number_peaks(x, 3) feature_dict[prefix + '_' + 'num_peaks_5'] = feature_calculators.number_peaks(x, 5) feature_dict[prefix + '_' + 'num_peaks_10'] = feature_calculators.number_peaks(x, 10) feature_dict[prefix + '_' + 'num_peaks_50'] = feature_calculators.number_peaks(x, 50) feature_dict[prefix + '_' + 'num_peaks_100'] = feature_calculators.number_peaks( x, 100) feature_dict[prefix + '_' + 'num_peaks_500'] = feature_calculators.number_peaks( x, 500) feature_dict[prefix + '_' + 'spkt_welch_density_1'] = list( feature_calculators.spkt_welch_density(x, [{ 'coeff': 1 }]))[0][1] feature_dict[prefix + '_' + 'spkt_welch_density_2'] = list( feature_calculators.spkt_welch_density(x, [{ 'coeff': 2 }]))[0][1] feature_dict[prefix + '_' + 'spkt_welch_density_5'] = list( feature_calculators.spkt_welch_density(x, [{ 'coeff': 5 }]))[0][1] feature_dict[prefix + '_' + 'spkt_welch_density_8'] = list( feature_calculators.spkt_welch_density(x, [{ 'coeff': 8 }]))[0][1] feature_dict[prefix + '_' + 'spkt_welch_density_10'] = list( feature_calculators.spkt_welch_density(x, [{ 'coeff': 10 }]))[0][1] feature_dict[prefix + '_' + 'spkt_welch_density_50'] = list( feature_calculators.spkt_welch_density(x, [{ 'coeff': 50 }]))[0][1] feature_dict[prefix + '_' + 'spkt_welch_density_100'] = list( feature_calculators.spkt_welch_density(x, [{ 'coeff': 100 }]))[0][1] feature_dict[ prefix + '_' + 'time_rev_asym_stat_1'] = feature_calculators.time_reversal_asymmetry_statistic( x, 1) feature_dict[ prefix + '_' + 'time_rev_asym_stat_2'] = feature_calculators.time_reversal_asymmetry_statistic( x, 2) feature_dict[ prefix + '_' + 'time_rev_asym_stat_3'] = feature_calculators.time_reversal_asymmetry_statistic( x, 3) feature_dict[ prefix + '_' + 'time_rev_asym_stat_4'] = feature_calculators.time_reversal_asymmetry_statistic( x, 4) feature_dict[ prefix + '_' + 'time_rev_asym_stat_10'] = feature_calculators.time_reversal_asymmetry_statistic( x, 10) feature_dict[ prefix + '_' + 'time_rev_asym_stat_100'] = feature_calculators.time_reversal_asymmetry_statistic( x, 100) for r in range(20): feature_dict[prefix + '_' + 'symmetry_looking_' + str(r)] = feature_calculators.symmetry_looking( x, [{ 'r': r * 0.05 }])[0][1] for r in range(1, 20): feature_dict[ prefix + '_' + 'large_standard_deviation_' + str(r)] = feature_calculators.large_standard_deviation( x, r * 0.05) for r in range(1, 10): feature_dict[prefix + '_' + 'quantile_' + str(r)] = feature_calculators.quantile(x, r * 0.1) for r in ['mean', 'median', 'var']: feature_dict[prefix + '_' + 'agg_autocorr_' + r] = feature_calculators.agg_autocorrelation( x, [{ 'f_agg': r, 'maxlag': 40 }])[0][-1] #for r in range(1, 6): # feature_dict[prefix+'_'+'number_cwt_peaks_'+str(r)] = feature_calculators.number_cwt_peaks(x, r) for r in range(1, 10): feature_dict[prefix + '_' + 'index_mass_quantile_' + str(r)] = feature_calculators.index_mass_quantile( x, [{ 'q': r }])[0][1] #for ql in [0., .2, .4, .6, .8]: # for qh in [.2, .4, .6, .8, 1.]: # if ql < qh: # for b in [False, True]: # for f in ["mean", "var"]: # feature_dict[prefix+'_'+'change_quantiles_'+str(ql)+'_'+str(qh)+'_'+str(b)+'_'+str(f)] = feature_calculators.change_quantiles(x, ql, qh, b, f) #for r in [.1, .3, .5, .7, .9]: # feature_dict[prefix+'_'+'approximate_entropy_'+str(r)] = feature_calculators.approximate_entropy(x, 2, r) feature_dict[ prefix + '_' + 'max_langevin_fixed_point'] = feature_calculators.max_langevin_fixed_point( x, 3, 30) for r in ['pvalue', 'rvalue', 'intercept', 'slope', 'stderr']: feature_dict[prefix + '_' + 'linear_trend_' + str(r)] = feature_calculators.linear_trend( x, [{ 'attr': r }])[0][1] for r in ['pvalue', 'teststat', 'usedlag']: feature_dict[prefix + '_' + 'augmented_dickey_fuller_' + r] = feature_calculators.augmented_dickey_fuller( x, [{ 'attr': r }])[0][1] for r in [0.5, 1, 1.5, 2, 2.5, 3, 5, 6, 7, 10]: feature_dict[prefix + '_' + 'ratio_beyond_r_sigma_' + str(r)] = feature_calculators.ratio_beyond_r_sigma( x, r) #for attr in ["pvalue", "rvalue", "intercept", "slope", "stderr"]: # feature_dict[prefix+'_'+'linear_trend_timewise_'+attr] = feature_calculators.linear_trend_timewise(x, [{'attr': attr}])[0][1] #for attr in ["rvalue", "intercept", "slope", "stderr"]: # for i in [5, 10, 50]: # for f in ["max", "min", "mean", "var"]: # feature_dict[prefix+'_'+'agg_linear_trend_'+attr+'_'+str(i)+'_'+f] = feature_calculators.agg_linear_trend(x, [{'attr': attr, 'chunk_len': i, 'f_agg': f}])[0][-1] #for width in [2, 5, 10, 20]: # for coeff in range(15): # for w in [2, 5, 10, 20]: # feature_dict[prefix+'_'+'cwt_coefficients_'+str(width)+'_'+str(coeff)+'_'+str(w)] = list(feature_calculators.cwt_coefficients(x, [{'widths': width, 'coeff': coeff, 'w': w}]))[0][1] #for r in range(10): # feature_dict[prefix+'_'+'partial_autocorr_'+str(r)] = feature_calculators.partial_autocorrelation(x, [{'lag': r}])[0][1] # "ar_coefficient": [{"coeff": coeff, "k": k} for coeff in range(5) for k in [10]], # "fft_coefficient": [{"coeff": k, "attr": a} for a, k in product(["real", "imag", "abs", "angle"], range(100))], # "fft_aggregated": [{"aggtype": s} for s in ["centroid", "variance", "skew", "kurtosis"]], # "value_count": [{"value": value} for value in [0, 1, -1]], # "range_count": [{"min": -1, "max": 1}, {"min": 1e12, "max": 0}, {"min": 0, "max": 1e12}], # "friedrich_coefficients": (lambda m: [{"coeff": coeff, "m": m, "r": 30} for coeff in range(m + 1)])(3), # "energy_ratio_by_chunks": [{"num_segments": 10, "segment_focus": i} for i in range(10)], return feature_dict
def function(x): param = [{"coeff": self.coeff, "attr": self.attr}] return list(fft_coefficient(x, param=param))[0][1]
import glob import pandas as pd import numpy as np from tsfresh.feature_extraction.feature_calculators import fft_coefficient from scipy.fftpack import fft, rfft, irfft path='./data/data_odiginal/test' all_files = glob.glob(path + '/*.xls') test=pd.DataFrame(np.nan,index=range(75000), columns=['id','time','1st','2nd','3rd','4th']) index=0 for file in all_files: temp=pd.read_excel(file,header=None) test.iloc[(index*7500):((index+1)*7500),2:6]=temp.loc[:7499,:].values test.iloc[(index*7500):((index+1)*7500),0]=index test.iloc[(index*7500):((index+1)*7500),1]=range(1,7501) index+=1 fft_coefficient(test[test.id==0]['2nd'], param={'coeff':76 , 'attr': "imag"})
def features(self, x, y, seg_id): feature_dict = dict() feature_dict['target'] = y feature_dict['seg_id'] = seg_id # create features here # numpy feature_dict['mean'] = np.mean(x) feature_dict['max'] = np.max(x) feature_dict['min'] = np.min(x) feature_dict['std'] = np.std(x) feature_dict['var'] = np.var(x) feature_dict['ptp'] = np.ptp(x) feature_dict['percentile_10'] = np.percentile(x, 10) feature_dict['percentile_20'] = np.percentile(x, 20) feature_dict['percentile_30'] = np.percentile(x, 30) feature_dict['percentile_40'] = np.percentile(x, 40) feature_dict['percentile_50'] = np.percentile(x, 50) feature_dict['percentile_60'] = np.percentile(x, 60) feature_dict['percentile_70'] = np.percentile(x, 70) feature_dict['percentile_80'] = np.percentile(x, 80) feature_dict['percentile_90'] = np.percentile(x, 90) # scipy feature_dict['skew'] = sp.stats.skew(x) feature_dict['kurtosis'] = sp.stats.kurtosis(x) feature_dict['kstat_1'] = sp.stats.kstat(x, 1) feature_dict['kstat_2'] = sp.stats.kstat(x, 2) feature_dict['kstat_3'] = sp.stats.kstat(x, 3) feature_dict['kstat_4'] = sp.stats.kstat(x, 4) feature_dict['moment_1'] = sp.stats.moment(x, 1) feature_dict['moment_2'] = sp.stats.moment(x, 2) feature_dict['moment_3'] = sp.stats.moment(x, 3) feature_dict['moment_4'] = sp.stats.moment(x, 4) feature_dict['abs_energy'] = feature_calculators.abs_energy(x) feature_dict['abs_sum_of_changes'] = feature_calculators.absolute_sum_of_changes(x) feature_dict['count_above_mean'] = feature_calculators.count_above_mean(x) feature_dict['count_below_mean'] = feature_calculators.count_below_mean(x) feature_dict['mean_abs_change'] = feature_calculators.mean_abs_change(x) feature_dict['mean_change'] = feature_calculators.mean_change(x) feature_dict['var_larger_than_std_dev'] = feature_calculators.variance_larger_than_standard_deviation(x) feature_dict['range_minf_m4000'] = feature_calculators.range_count(x, -np.inf, -4000) feature_dict['range_m4000_m3000'] = feature_calculators.range_count(x, -4000, -3000) feature_dict['range_m3000_m2000'] = feature_calculators.range_count(x, -3000, -2000) feature_dict['range_m2000_m1000'] = feature_calculators.range_count(x, -2000, -1000) feature_dict['range_m1000_0'] = feature_calculators.range_count(x, -1000, 0) feature_dict['range_0_p1000'] = feature_calculators.range_count(x, 0, 1000) feature_dict['range_p1000_p2000'] = feature_calculators.range_count(x, 1000, 2000) feature_dict['range_p2000_p3000'] = feature_calculators.range_count(x, 2000, 3000) feature_dict['range_p3000_p4000'] = feature_calculators.range_count(x, 3000, 4000) feature_dict['range_p4000_pinf'] = feature_calculators.range_count(x, 4000, np.inf) feature_dict['ratio_unique_values'] = feature_calculators.ratio_value_number_to_time_series_length(x) feature_dict['first_loc_min'] = feature_calculators.first_location_of_minimum(x) feature_dict['first_loc_max'] = feature_calculators.first_location_of_maximum(x) feature_dict['last_loc_min'] = feature_calculators.last_location_of_minimum(x) feature_dict['last_loc_max'] = feature_calculators.last_location_of_maximum(x) feature_dict['time_rev_asym_stat_10'] = feature_calculators.time_reversal_asymmetry_statistic(x, 10) feature_dict['time_rev_asym_stat_100'] = feature_calculators.time_reversal_asymmetry_statistic(x, 100) feature_dict['time_rev_asym_stat_1000'] = feature_calculators.time_reversal_asymmetry_statistic(x, 1000) feature_dict['autocorrelation_5'] = feature_calculators.autocorrelation(x, 5) feature_dict['autocorrelation_10'] = feature_calculators.autocorrelation(x, 10) feature_dict['autocorrelation_50'] = feature_calculators.autocorrelation(x, 50) feature_dict['autocorrelation_100'] = feature_calculators.autocorrelation(x, 100) feature_dict['autocorrelation_1000'] = feature_calculators.autocorrelation(x, 1000) feature_dict['c3_5'] = feature_calculators.c3(x, 5) feature_dict['c3_10'] = feature_calculators.c3(x, 10) feature_dict['c3_100'] = feature_calculators.c3(x, 100) feature_dict['fft_1_real'] = list(feature_calculators.fft_coefficient(x, [{'coeff': 1, 'attr': 'real'}]))[0][1] feature_dict['fft_1_imag'] = list(feature_calculators.fft_coefficient(x, [{'coeff': 1, 'attr': 'imag'}]))[0][1] feature_dict['fft_1_ang'] = list(feature_calculators.fft_coefficient(x, [{'coeff': 1, 'attr': 'angle'}]))[0][1] feature_dict['fft_2_real'] = list(feature_calculators.fft_coefficient(x, [{'coeff': 2, 'attr': 'real'}]))[0][1] feature_dict['fft_2_imag'] = list(feature_calculators.fft_coefficient(x, [{'coeff': 2, 'attr': 'imag'}]))[0][1] feature_dict['fft_2_ang'] = list(feature_calculators.fft_coefficient(x, [{'coeff': 2, 'attr': 'angle'}]))[0][1] feature_dict['fft_3_real'] = list(feature_calculators.fft_coefficient(x, [{'coeff': 3, 'attr': 'real'}]))[0][1] feature_dict['fft_3_imag'] = list(feature_calculators.fft_coefficient(x, [{'coeff': 3, 'attr': 'imag'}]))[0][1] feature_dict['fft_3_ang'] = list(feature_calculators.fft_coefficient(x, [{'coeff': 3, 'attr': 'angle'}]))[0][1] feature_dict['long_strk_above_mean'] = feature_calculators.longest_strike_above_mean(x) feature_dict['long_strk_below_mean'] = feature_calculators.longest_strike_below_mean(x) feature_dict['cid_ce_0'] = feature_calculators.cid_ce(x, 0) feature_dict['cid_ce_1'] = feature_calculators.cid_ce(x, 1) feature_dict['binned_entropy_5'] = feature_calculators.binned_entropy(x, 5) feature_dict['binned_entropy_10'] = feature_calculators.binned_entropy(x, 10) feature_dict['binned_entropy_20'] = feature_calculators.binned_entropy(x, 20) feature_dict['binned_entropy_50'] = feature_calculators.binned_entropy(x, 50) feature_dict['binned_entropy_80'] = feature_calculators.binned_entropy(x, 80) feature_dict['binned_entropy_100'] = feature_calculators.binned_entropy(x, 100) feature_dict['num_crossing_0'] = feature_calculators.number_crossing_m(x, 0) feature_dict['num_peaks_10'] = feature_calculators.number_peaks(x, 10) feature_dict['num_peaks_50'] = feature_calculators.number_peaks(x, 50) feature_dict['num_peaks_100'] = feature_calculators.number_peaks(x, 100) feature_dict['num_peaks_500'] = feature_calculators.number_peaks(x, 500) feature_dict['spkt_welch_density_1'] = list(feature_calculators.spkt_welch_density(x, [{'coeff': 1}]))[0][1] feature_dict['spkt_welch_density_10'] = list(feature_calculators.spkt_welch_density(x, [{'coeff': 10}]))[0][1] feature_dict['spkt_welch_density_50'] = list(feature_calculators.spkt_welch_density(x, [{'coeff': 50}]))[0][1] feature_dict['spkt_welch_density_100'] = list(feature_calculators.spkt_welch_density(x, [{'coeff': 100}]))[0][1] feature_dict['time_rev_asym_stat_1'] = feature_calculators.time_reversal_asymmetry_statistic(x, 1) feature_dict['time_rev_asym_stat_10'] = feature_calculators.time_reversal_asymmetry_statistic(x, 10) feature_dict['time_rev_asym_stat_100'] = feature_calculators.time_reversal_asymmetry_statistic(x, 100) return feature_dict
def features(self, x, y, seg_id, denoise=False): if (denoise == True): x_hp = high_pass_filter(x, low_cutoff=10000, sample_rate=4000000) x = denoise_signal(x_hp, wavelet='haar', level=1) feature_dict = dict() feature_dict['target'] = y feature_dict['seg_id'] = seg_id # create features here # lists with parameters to iterate over them percentiles = [ 1, 5, 10, 20, 25, 30, 40, 50, 60, 70, 75, 80, 90, 95, 99 ] hann_windows = [50, 150, 1500, 15000] spans = [300, 3000, 30000, 50000] windows = [10, 50, 100, 500, 1000, 10000] borders = list(range(-4000, 4001, 1000)) peaks = [10, 20, 50, 100] coefs = [1, 5, 10, 50, 100] lags = [10, 100, 1000, 10000] autocorr_lags = [5, 10, 50, 100, 500, 1000, 5000, 10000] # basic stats feature_dict['mean'] = x.mean() feature_dict['std'] = x.std() feature_dict['max'] = x.max() feature_dict['min'] = x.min() # basic stats on absolute values feature_dict['mean_change_abs'] = np.mean(np.diff(x)) feature_dict['abs_max'] = np.abs(x).max() feature_dict['abs_mean'] = np.abs(x).mean() feature_dict['abs_std'] = np.abs(x).std() # geometric and harminic means feature_dict['hmean'] = stats.hmean(np.abs(x[np.nonzero(x)[0]])) feature_dict['gmean'] = stats.gmean(np.abs(x[np.nonzero(x)[0]])) # k-statistic and moments for i in range(1, 5): feature_dict['kstat_{}'.format(i)] = stats.kstat(x, i) feature_dict['moment_{}'.format(i)] = stats.moment(x, i) for i in [1, 2]: feature_dict['kstatvar_{}'.format(i)] = stats.kstatvar(x, i) # aggregations on various slices of data for agg_type, slice_length, direction in product( ['std', 'min', 'max', 'mean'], [1000, 10000, 50000], ['first', 'last']): if direction == 'first': feature_dict['{}_{}_{}'.format( agg_type, direction, slice_length)] = x[:slice_length].agg(agg_type) elif direction == 'last': feature_dict['{}_{}_{}'.format( agg_type, direction, slice_length)] = x[-slice_length:].agg(agg_type) feature_dict['max_to_min'] = x.max() / np.abs(x.min()) feature_dict['max_to_min_diff'] = x.max() - np.abs(x.min()) feature_dict['count_big'] = len(x[np.abs(x) > 500]) feature_dict['sum'] = x.sum() feature_dict['mean_change_rate'] = calc_change_rate(x) # calc_change_rate on slices of data for slice_length, direction in product([1000, 10000, 50000], ['first', 'last']): if direction == 'first': feature_dict['mean_change_rate_{}_{}'.format( direction, slice_length)] = calc_change_rate(x[:slice_length]) elif direction == 'last': feature_dict['mean_change_rate_{}_{}'.format( direction, slice_length)] = calc_change_rate(x[-slice_length:]) # percentiles on original and absolute values for p in percentiles: feature_dict['percentile_{}'.format(p)] = np.percentile(x, p) feature_dict['abs_percentile_{}'.format(p)] = np.percentile( np.abs(x), p) feature_dict['trend'] = add_trend_feature(x) feature_dict['abs_trend'] = add_trend_feature(x, abs_values=True) feature_dict['mad'] = x.mad() feature_dict['kurt'] = x.kurtosis() feature_dict['skew'] = x.skew() feature_dict['med'] = x.median() feature_dict['Hilbert_mean'] = np.abs(hilbert(x)).mean() for hw in hann_windows: feature_dict['Hann_window_mean_{}'.format(hw)] = ( convolve(x, hann(hw), mode='same') / sum(hann(hw))).mean() feature_dict['classic_sta_lta1_mean'] = classic_sta_lta(x, 500, 10000).mean() feature_dict['classic_sta_lta2_mean'] = classic_sta_lta( x, 5000, 100000).mean() feature_dict['classic_sta_lta3_mean'] = classic_sta_lta(x, 3333, 6666).mean() feature_dict['classic_sta_lta4_mean'] = classic_sta_lta( x, 10000, 25000).mean() feature_dict['classic_sta_lta5_mean'] = classic_sta_lta(x, 50, 1000).mean() feature_dict['classic_sta_lta6_mean'] = classic_sta_lta(x, 100, 5000).mean() feature_dict['classic_sta_lta7_mean'] = classic_sta_lta(x, 333, 666).mean() feature_dict['classic_sta_lta8_mean'] = classic_sta_lta( x, 4000, 10000).mean() # exponential rolling statistics ewma = pd.Series.ewm for s in spans: feature_dict['exp_Moving_average_{}_mean'.format(s)] = (ewma( x, span=s).mean(skipna=True)).mean(skipna=True) feature_dict['exp_Moving_average_{}_std'.format(s)] = (ewma( x, span=s).mean(skipna=True)).std(skipna=True) feature_dict['exp_Moving_std_{}_mean'.format(s)] = (ewma( x, span=s).std(skipna=True)).mean(skipna=True) feature_dict['exp_Moving_std_{}_std'.format(s)] = (ewma( x, span=s).std(skipna=True)).std(skipna=True) feature_dict['iqr1'] = np.subtract(*np.percentile(x, [95, 5])) feature_dict['ave10'] = stats.trim_mean(x, 0.1) for slice_length, threshold in product([50000, 100000, 150000], [5, 10, 20, 50, 100]): feature_dict['count_big_{}_threshold_{}'.format( slice_length, threshold)] = (np.abs(x[-slice_length:]) > threshold).sum() feature_dict['count_big_{}_less_threshold_{}'.format( slice_length, threshold)] = (np.abs(x[-slice_length:]) < threshold).sum() # tfresh features take too long to calculate, so I comment them for now feature_dict['abs_energy'] = feature_calculators.abs_energy(x) feature_dict[ 'abs_sum_of_changes'] = feature_calculators.absolute_sum_of_changes( x) feature_dict[ 'count_above_mean'] = feature_calculators.count_above_mean(x) feature_dict[ 'count_below_mean'] = feature_calculators.count_below_mean(x) feature_dict['mean_abs_change'] = feature_calculators.mean_abs_change( x) feature_dict['mean_change'] = feature_calculators.mean_change(x) feature_dict[ 'var_larger_than_std_dev'] = feature_calculators.variance_larger_than_standard_deviation( x) feature_dict['range_minf_m4000'] = feature_calculators.range_count( x, -np.inf, -4000) feature_dict['range_p4000_pinf'] = feature_calculators.range_count( x, 4000, np.inf) for i, j in zip(borders, borders[1:]): feature_dict['range_{}_{}'.format( i, j)] = feature_calculators.range_count(x, i, j) feature_dict[ 'ratio_unique_values'] = feature_calculators.ratio_value_number_to_time_series_length( x) feature_dict[ 'first_loc_min'] = feature_calculators.first_location_of_minimum(x) feature_dict[ 'first_loc_max'] = feature_calculators.first_location_of_maximum(x) feature_dict[ 'last_loc_min'] = feature_calculators.last_location_of_minimum(x) feature_dict[ 'last_loc_max'] = feature_calculators.last_location_of_maximum(x) for lag in lags: feature_dict['time_rev_asym_stat_{}'.format( lag)] = feature_calculators.time_reversal_asymmetry_statistic( x, lag) for autocorr_lag in autocorr_lags: feature_dict['autocorrelation_{}'.format( autocorr_lag)] = feature_calculators.autocorrelation( x, autocorr_lag) feature_dict['c3_{}'.format( autocorr_lag)] = feature_calculators.c3(x, autocorr_lag) for coeff, attr in product([1, 2, 3, 4, 5], ['real', 'imag', 'angle']): feature_dict['fft_{}_{}'.format(coeff, attr)] = list( feature_calculators.fft_coefficient(x, [{ 'coeff': coeff, 'attr': attr }]))[0][1] feature_dict[ 'long_strk_above_mean'] = feature_calculators.longest_strike_above_mean( x) feature_dict[ 'long_strk_below_mean'] = feature_calculators.longest_strike_below_mean( x) feature_dict['cid_ce_0'] = feature_calculators.cid_ce(x, 0) feature_dict['cid_ce_1'] = feature_calculators.cid_ce(x, 1) for p in percentiles: feature_dict['binned_entropy_{}'.format( p)] = feature_calculators.binned_entropy(x, p) feature_dict['num_crossing_0'] = feature_calculators.number_crossing_m( x, 0) for peak in peaks: feature_dict['num_peaks_{}'.format( peaks)] = feature_calculators.number_peaks(x, peak) for c in coefs: feature_dict['spkt_welch_density_{}'.format(c)] = list( feature_calculators.spkt_welch_density(x, [{ 'coeff': c }]))[0][1] feature_dict['time_rev_asym_stat_{}'.format( c)] = feature_calculators.time_reversal_asymmetry_statistic( x, c) # statistics on rolling windows of various sizes for w in windows: x_roll_std = x.rolling(w).std().dropna().values x_roll_mean = x.rolling(w).mean().dropna().values feature_dict['ave_roll_std_{}'.format(w)] = x_roll_std.mean() feature_dict['std_roll_std_{}'.format(w)] = x_roll_std.std() feature_dict['max_roll_std_{}'.format(w)] = x_roll_std.max() feature_dict['min_roll_std_{}'.format(w)] = x_roll_std.min() for p in percentiles: feature_dict['percentile_roll_std_{}_window_{}'.format( p, w)] = np.percentile(x_roll_std, p) feature_dict['av_change_abs_roll_std_{}'.format(w)] = np.mean( np.diff(x_roll_std)) feature_dict['av_change_rate_roll_std_{}'.format(w)] = np.mean( np.nonzero((np.diff(x_roll_std) / x_roll_std[:-1]))[0]) feature_dict['abs_max_roll_std_{}'.format(w)] = np.abs( x_roll_std).max() feature_dict['ave_roll_mean_{}'.format(w)] = x_roll_mean.mean() feature_dict['std_roll_mean_{}'.format(w)] = x_roll_mean.std() feature_dict['max_roll_mean_{}'.format(w)] = x_roll_mean.max() feature_dict['min_roll_mean_{}'.format(w)] = x_roll_mean.min() for p in percentiles: feature_dict['percentile_roll_mean_{}_window_{}'.format( p, w)] = np.percentile(x_roll_mean, p) feature_dict['av_change_abs_roll_mean_{}'.format(w)] = np.mean( np.diff(x_roll_mean)) feature_dict['av_change_rate_roll_mean_{}'.format(w)] = np.mean( np.nonzero((np.diff(x_roll_mean) / x_roll_mean[:-1]))[0]) feature_dict['abs_max_roll_mean_{}'.format(w)] = np.abs( x_roll_mean).max() return feature_dict
def extract_best_features(timeseries, samples_per_window): ''' By RFE ''' extracted_features = pd.DataFrame() start = 0 end = samples_per_window col_feature1 = [] col_feature2 = [] col_feature3 = [] col_feature4 = [] col_feature5 = [] col_feature6 = [] col_feature7 = [] col_feature8 = [] for i in tqdm(range(len(timeseries) // samples_per_window)): window = timeseries[start:end]['Open'].as_matrix().tolist() col_feature1.append( list( feature_calculators.fft_coefficient(window, [{ 'coeff': 10, 'attr': 'imag' }]))[0][1]) col_feature2.append( list( feature_calculators.fft_coefficient(window, [{ 'coeff': 14, 'attr': 'imag' }]))[0][1]) col_feature3.append( list( feature_calculators.fft_coefficient(window, [{ 'coeff': 2, 'attr': 'abs' }]))[0][1]) col_feature4.append( list( feature_calculators.fft_coefficient(window, [{ 'coeff': 3, 'attr': 'real' }]))[0][1]) col_feature5.append( list( feature_calculators.fft_coefficient(window, [{ 'coeff': 4, 'attr': 'real' }]))[0][1]) col_feature6.append( list( feature_calculators.fft_coefficient(window, [{ 'coeff': 6, 'attr': 'imag' }]))[0][1]) col_feature7.append( list( feature_calculators.fft_coefficient(window, [{ 'coeff': 7, 'attr': 'imag' }]))[0][1]) col_feature8.append( list( feature_calculators.fft_coefficient(window, [{ 'coeff': 8, 'attr': 'real' }]))[0][1]) start = end end += samples_per_window extracted_features['Open_feature1'] = col_feature1 extracted_features['Open_feature2'] = col_feature2 extracted_features['Open_feature3'] = col_feature3 extracted_features['Open_feature4'] = col_feature4 extracted_features['Open_feature5'] = col_feature5 extracted_features['Open_feature6'] = col_feature6 extracted_features['Open_feature7'] = col_feature7 extracted_features['Open_feature8'] = col_feature8 return extracted_features
def generate_time_series_feats(x_dataset, dataset_name="raw", test=False): make_dir_if_not_exists(os.path.join(FEATURES_PATH, 'tsfeats')) time_length = x_dataset.shape[1] features_function_dict = { "mean": mean, "median": median, "length": length, "minimum": minimum, "maximum": maximum, "variance": variance, "skewness": skewness, "kurtosis": kurtosis, "sum_values": sum_values, "abs_energy": abs_energy, "mean_change": mean_change, "mean_abs_change": mean_abs_change, "count_below_mean": count_below_mean, "count_above_mean": count_above_mean, "has_duplicate_min": has_duplicate_min, "has_duplicate_max": has_duplicate_max, "standard_deviation": standard_deviation, "absolute_sum_of_changes": absolute_sum_of_changes, "last_location_of_minimum": last_location_of_minimum, "last_location_of_maximum": last_location_of_maximum, "first_location_of_maximum": first_location_of_maximum, "longest_strike_below_mean": longest_strike_below_mean, "longest_strike_above_mean": longest_strike_above_mean, "sum_of_reoccurring_values": sum_of_reoccurring_values, "first_location_of_minimum": first_location_of_minimum, "sum_of_reoccurring_data_points": sum_of_reoccurring_data_points, "variance_larger_than_standard_deviation": variance_larger_than_standard_deviation, "ratio_value_number_to_time_series_length": ratio_value_number_to_time_series_length, "percentage_of_reoccurring_values_to_all_values": percentage_of_reoccurring_values_to_all_values, "binned_entropy_max300": lambda x: binned_entropy(x, 300), "binned_entropy_max400": lambda x: binned_entropy(x, 400), "cid_ce_true": lambda x: cid_ce(x, True), "cid_ce_false": lambda x: cid_ce(x, False), "percentage_of_reoccurring_datapoints_to_all_datapoints": percentage_of_reoccurring_datapoints_to_all_datapoints } for feature_name, function_call in features_function_dict.iteritems(): print "{:.<70s}".format("- Processing feature: %s" % feature_name), feature_name = 'tsfeats/%s_%s' % (dataset_name, feature_name) if not features_exists(feature_name, test): feats = x_dataset.apply(function_call, axis=1, raw=True).values save_features(feats, feature_name, test) print("Done") else: print("Already generated") ar_param_k100 = [{"coeff": i, "k": 100} for i in range(100 + 1)] ar_param_k500 = [{"coeff": i, "k": 500} for i in range(500 + 1)] agg50_mean_linear_trend = [{ "attr": val, "chunk_len": 50, "f_agg": "mean" } for val in ("pvalue", "rvalue", "intercept", "slope", "stderr")] aug_dickey_fuler_params = [{ "attr": "teststat" }, { "attr": "pvalue" }, { "attr": "usedlag" }] energy_ratio_num10_focus5 = [{"num_segments": 10, "segment_focus": 5}] fft_aggr_spectrum = [{ "aggtype": "centroid" }, { "aggtype": "variance" }, { "aggtype": "skew" }, { "aggtype": "kurtosis" }] fft_coefficient_real = [{ "coeff": i, "attr": "real" } for i in range((time_length + 1) // 2)] fft_coefficient_imag = [{ "coeff": i, "attr": "imag" } for i in range((time_length + 1) // 2)] fft_coefficient_abs = [{ "coeff": i, "attr": "abs" } for i in range((time_length + 1) // 2)] fft_coefficient_angle = [{ "coeff": i, "attr": "angle" } for i in range((time_length + 1) // 2)] linear_trend_params = [{ "attr": val } for val in ("pvalue", "rvalue", "intercept", "slope", "stderr")] other_feats_dict = { "ar_coeff100": lambda x: dict(ar_coefficient(x, ar_param_k100)), "ar_coeff500": lambda x: dict(ar_coefficient(x, ar_param_k500)), "agg50_mean_lin_trend": lambda x: dict(agg_linear_trend(x, agg50_mean_linear_trend)), "aug_dickey_fuler": lambda x: dict(augmented_dickey_fuller(x, aug_dickey_fuler_params)), "energy_ratio_num10_focus5": lambda x: dict(energy_ratio_by_chunks(x, energy_ratio_num10_focus5)), "fft_aggr_spectrum": lambda x: dict(fft_aggregated(x, fft_aggr_spectrum)), "fft_coeff_real": lambda x: dict(fft_coefficient(x, fft_coefficient_real)), "fft_coeff_imag": lambda x: dict(fft_coefficient(x, fft_coefficient_imag)), "fft_coeff_abs": lambda x: dict(fft_coefficient(x, fft_coefficient_abs)), "fft_coeff_angle": lambda x: dict(fft_coefficient(x, fft_coefficient_angle)), "linear_trend": lambda x: dict(linear_trend(x, linear_trend_params)), } for feature_name, function_call in other_feats_dict.iteritems(): print "{:.<70s}".format("- Processing features: %s" % feature_name), feature_name = 'tsfeats/%s_%s' % (dataset_name, feature_name) if not features_exists(feature_name, test): feats_dict = x_dataset.apply(function_call, axis=1, raw=True).values.tolist() feats = pd.DataFrame.from_dict(feats_dict) save_features(feats.values, feature_name, test) print("Done") else: print("Already generated") # Auto-correlations as features print("- Processing Auto-correlation features...") corr_dataset = x_dataset.apply(autocorrelation_all, axis=1, raw=True) save_features(corr_dataset.values, '%s_auto_correlation_all' % dataset_name, test) print("- Processing ARIMA(5,5,1) Features...") arima_features = parallelize_row(x_dataset.values, generate_arima_feats, n_jobs=2) assert arima_features.shape[0] == x_dataset.shape[0] # Assert the axis save_features(arima_features, '%s_arima_5_5_1' % dataset_name, test)