示例#1
0
def test_staircase_history_naive(client, tsh):
    # each days we insert 7 data points
    from datetime import datetime
    for idx, idate in enumerate(
            pd.date_range(start=utcdt(2015, 1, 1),
                          end=utcdt(2015, 1, 4),
                          freq='D')):
        series = genserie(start=idate.tz_convert(None), freq='H', repeat=7)
        client.update('staircase-naive', series, 'Babar', insertion_date=idate)

    series = client.staircase('staircase-naive',
                              pd.Timedelta(hours=3),
                              from_value_date=datetime(2015, 1, 1, 4),
                              to_value_date=datetime(2015, 1, 2, 5))
    assert series.name == 'staircase-naive'

    assert_df(
        """
2015-01-01 04:00:00    4.0
2015-01-01 05:00:00    5.0
2015-01-01 06:00:00    6.0
2015-01-02 03:00:00    3.0
2015-01-02 04:00:00    4.0
2015-01-02 05:00:00    5.0
""", series)

    # series = client.staircase(
    #     'staircase-naive',
    #     pd.Timedelta(hours=3),
    #     from_value_date=datetime(2015, 1, 1, 4),
    #     to_value_date=datetime(2015, 1, 2, 5)
    # )

    hist = client.history('staircase-naive')
    assert len(hist) == 4
    hist = client.history('staircase-naive',
                          from_insertion_date=datetime(2015, 1, 2),
                          to_insertion_date=datetime(2015, 1, 3))
    assert len(hist) == 2
    hist = client.history('staircase-naive',
                          from_value_date=datetime(2015, 1, 1, 3),
                          to_value_date=datetime(2015, 1, 2, 1))

    assert all(series.name == 'staircase-naive' for series in hist.values())

    assert_hist(
        """
insertion_date             value_date         
2015-01-01 00:00:00+00:00  2015-01-01 03:00:00    3.0
                           2015-01-01 04:00:00    4.0
                           2015-01-01 05:00:00    5.0
                           2015-01-01 06:00:00    6.0
2015-01-02 00:00:00+00:00  2015-01-01 03:00:00    3.0
                           2015-01-01 04:00:00    4.0
                           2015-01-01 05:00:00    5.0
                           2015-01-01 06:00:00    6.0
                           2015-01-02 00:00:00    0.0
                           2015-01-02 01:00:00    1.0
""", hist)
示例#2
0
def test_custom_history(engine, tsh):
    @func('made-up-series')
    def madeup(base: int, coeff: float = 1.) -> pd.Series:
        return pd.Series(np.array([base, base + 1, base + 2]) * coeff,
                         index=pd.date_range(dt(2019, 1, 1),
                                             periods=3,
                                             freq='D'))

    @finder('made-up-series')
    def find(cn, tsh, tree):
        return {
            tree[0]: {
                'index_type': 'datetime64[ns]',
                'index_dtype': '|M8[ns]',
                'tzaware': False,
                'value_type': 'float64',
                'value_dtype': '<f8'
            }
        }

    @history('made-up-series')
    def madeup_history(__interpreter__, base, coeff):
        hist = {}
        for i in (1, 2, 3):
            hist[pd.Timestamp(f'2020-1-{i}', tz='utc')] = pd.Series(
                np.array([base, base + 1, base + 2]) * coeff,
                index=pd.date_range(dt(2019, 1, i), periods=3, freq='D'))
        return hist

    tsh.register_formula(
        engine, 'made-up',
        '(+ 3 (add (made-up-series 1 #:coeff 2.) (made-up-series 2 #:coeff .5)))',
        False)
    assert_df("""
2019-01-01     6.0
2019-01-02     8.5
2019-01-03    11.0
""", tsh.get(engine, 'made-up'))

    hist = tsh.history(engine, 'made-up')
    assert_hist(
        """
insertion_date             value_date
2020-01-01 00:00:00+00:00  2019-01-01     6.0
                           2019-01-02     8.5
                           2019-01-03    11.0
2020-01-02 00:00:00+00:00  2019-01-01     6.0
                           2019-01-02     8.5
                           2019-01-03    11.0
2020-01-03 00:00:00+00:00  2019-01-01     6.0
                           2019-01-02     8.5
                           2019-01-03    11.0
""", hist)
示例#3
0
def test_local_formula_remote_series(mapi):
    rtsh = timeseries('test-mapi-2')
    rtsh.update(
        mapi.engine,
        pd.Series(
            [1, 2, 3],
            index=pd.date_range(pd.Timestamp('2020-1-1'), periods=3, freq='H'),
        ),
        'remote-series',
        'Babar',
        insertion_date=pd.Timestamp('2020-1-1', tz='UTC')
    )

    mapi.register_formula(
        'test-localformula-remoteseries',
        '(+ 1 (series "remote-series"))'
    )

    ts = mapi.get('test-localformula-remoteseries')
    assert_df("""
2020-01-01 00:00:00    2.0
2020-01-01 01:00:00    3.0
2020-01-01 02:00:00    4.0
""", ts)

    hist = mapi.history('test-localformula-remoteseries')
    assert_hist("""
insertion_date             value_date         
2020-01-01 00:00:00+00:00  2020-01-01 00:00:00    2.0
                           2020-01-01 01:00:00    3.0
                           2020-01-01 02:00:00    4.0
""", hist)

    f = mapi.formula('test-localformula-remoteseries')
    assert f == '(+ 1 (series "remote-series"))'

    none = mapi.formula('nosuchformula')
    assert none is None

    # altsource formula
    rtsh.register_formula(
        mapi.engine,
        'remote-formula-remote-series',
        '(+ 2 (series "remote-series"))'
    )
    f = mapi.formula('remote-formula-remote-series')
    assert f == '(+ 2 (series "remote-series"))'

    assert_df("""
2020-01-01 00:00:00    3.0
2020-01-01 01:00:00    4.0
2020-01-01 02:00:00    5.0
""", mapi.get('remote-formula-remote-series'))
示例#4
0
def test_base_universal_api(pgapi, httpapi):
    series = pd.Series([1, 2, 3],
                       index=pd.date_range(utcdt(2020, 1, 1),
                                           periods=3,
                                           freq='D'))

    pgapi.update('api-test',
                 series,
                 'Babar',
                 insertion_date=utcdt(2019, 1, 1),
                 metadata={'about': 'test'})
    out = httpapi.get('api-test')
    assert_df(
        """
2020-01-01 00:00:00+00:00    1.0
2020-01-02 00:00:00+00:00    2.0
2020-01-03 00:00:00+00:00    3.0
""", out)

    series[utcdt(2020, 1, 4)] = 4
    pgapi.update('api-test', series, 'Babar', insertion_date=utcdt(2019, 1, 2))
    out = pgapi.get('api-test',
                    from_value_date=utcdt(2020, 1, 2),
                    to_value_date=utcdt(2020, 1, 3))
    assert_df(
        """
2020-01-02 00:00:00+00:00    2.0
2020-01-03 00:00:00+00:00    3.0
""", out)

    series[utcdt(2019, 12, 31)] = 0
    pgapi.replace('api-test',
                  series,
                  'Babar',
                  insertion_date=utcdt(2019, 1, 3))

    out = httpapi.get('api-test')
    assert_df(
        """
2019-12-31 00:00:00+00:00    0.0
2020-01-01 00:00:00+00:00    1.0
2020-01-02 00:00:00+00:00    2.0
2020-01-03 00:00:00+00:00    3.0
2020-01-04 00:00:00+00:00    4.0
""", out)

    assert httpapi.type('api-test') == pgapi.type('api-test')
    assert httpapi.interval('api-test') == pgapi.interval('api-test')

    out = httpapi.get('api-test', revision_date=utcdt(2019, 1, 1))
    assert_df(
        """
2020-01-01 00:00:00+00:00    1.0
2020-01-02 00:00:00+00:00    2.0
2020-01-03 00:00:00+00:00    3.0
""", out)

    hist = httpapi.history('api-test')
    assert_hist(
        """
insertion_date             value_date               
2019-01-01 00:00:00+00:00  2020-01-01 00:00:00+00:00    1.0
                           2020-01-02 00:00:00+00:00    2.0
                           2020-01-03 00:00:00+00:00    3.0
2019-01-02 00:00:00+00:00  2020-01-01 00:00:00+00:00    1.0
                           2020-01-02 00:00:00+00:00    2.0
                           2020-01-03 00:00:00+00:00    3.0
                           2020-01-04 00:00:00+00:00    4.0
2019-01-03 00:00:00+00:00  2019-12-31 00:00:00+00:00    0.0
                           2020-01-01 00:00:00+00:00    1.0
                           2020-01-02 00:00:00+00:00    2.0
                           2020-01-03 00:00:00+00:00    3.0
                           2020-01-04 00:00:00+00:00    4.0
""", hist)

    hist = pgapi.history('api-test', diffmode=True)
    assert_hist(
        """
insertion_date             value_date               
2019-01-01 00:00:00+00:00  2020-01-01 00:00:00+00:00    1.0
                           2020-01-02 00:00:00+00:00    2.0
                           2020-01-03 00:00:00+00:00    3.0
2019-01-02 00:00:00+00:00  2020-01-04 00:00:00+00:00    4.0
2019-01-03 00:00:00+00:00  2019-12-31 00:00:00+00:00    0.0
""", hist)

    assert pgapi.exists('api-test')
    assert not pgapi.exists('i-dont-exist')
    assert httpapi.exists('api-test')
    assert not httpapi.exists('i-dont-exist')

    ival = pgapi.interval('api-test')
    assert ival.left == pd.Timestamp('2019-12-31 00:00:00+0000', tz='UTC')
    assert ival.right == pd.Timestamp('2020-01-04 00:00:00+0000', tz='UTC')

    meta = pgapi.metadata('api-test', all=True)
    assert meta == {
        'tzaware': True,
        'index_type': 'datetime64[ns, UTC]',
        'value_type': 'float64',
        'index_dtype': '|M8[ns]',
        'value_dtype': '<f8'
    }
    meta = httpapi.metadata('api-test')
    assert meta == {}

    pgapi.update_metadata('api-test', {'desc': 'a metadata test'})
    meta = pgapi.metadata('api-test')
    assert meta == {'desc': 'a metadata test'}

    assert pgapi.type('api-test') == 'primary'

    st = pgapi.staircase('api-test', delta=timedelta(days=366))
    assert_df(
        """
2020-01-02 00:00:00+00:00    2.0
2020-01-03 00:00:00+00:00    3.0
2020-01-04 00:00:00+00:00    4.0
""", st)

    pgapi.rename('api-test', 'api-test2')
    assert pgapi.exists('api-test2')
    assert not pgapi.exists('api-test')
    assert httpapi.exists('api-test2')
    assert not httpapi.exists('api-test')

    pgapi.delete('api-test2')
    assert not pgapi.exists('api-test')
    assert not httpapi.exists('api-test')
    pgapi.delete('api-test2')
示例#5
0
def test_local_formula_remote_series(mapihttp, engine):
    from tshistory_formula.tsio import timeseries as pgseries

    mapi = mapihttp
    assert repr(mapi) == (
        'timeseries(uri=postgresql://localhost:5433/postgres,'
        'ns=ns-test-local,'
        'sources=[source(uri=http://test-uri2,ns=ns-test-remote), '
        'source(uri=http://unavailable,ns=ns-test-unavailable-remote)])')

    assert len(mapi.othersources.sources) == 2
    assert mapi.namespace == 'ns-test-local'
    assert mapi.uri == 'postgresql://localhost:5433/postgres'
    assert mapi.othersources.sources[0].namespace == 'ns-test-remote'
    assert mapi.othersources.sources[0].uri == 'http://test-uri2'

    series = pd.Series(
        [1, 2, 3],
        index=pd.date_range(pd.Timestamp('2020-1-1'), periods=3, freq='H'),
    )
    mapi.update('local-series', series, 'Babar')

    rtsh = pgseries('ns-test-remote')
    rtsh.update(engine,
                series,
                'remote-series',
                'Celeste',
                insertion_date=pd.Timestamp('2020-1-1', tz='UTC'))

    cat = mapi.catalog(allsources=True)
    assert dict(cat) == {
        ('db://localhost:5433/postgres', 'ns-test-local'):
        [('local-series', 'primary')],
        ('db://localhost:5433/postgres', 'ns-test-remote'):
        [['remote-series', 'primary']]
    }
    mapi.register_formula('test-localformula-remoteseries',
                          '(+ 1 (series "remote-series"))')

    ts = mapi.get('test-localformula-remoteseries')
    assert_df(
        """
2020-01-01 00:00:00    2.0
2020-01-01 01:00:00    3.0
2020-01-01 02:00:00    4.0
""", ts)

    hist = mapi.history('test-localformula-remoteseries')
    assert_hist(
        """
insertion_date             value_date         
2020-01-01 00:00:00+00:00  2020-01-01 00:00:00    2.0
                           2020-01-01 01:00:00    3.0
                           2020-01-01 02:00:00    4.0
""", hist)

    ival = mapi.interval('remote-series')
    assert (ival.left, ival.right) == (pd.Timestamp('2020-01-01 00:00:00'),
                                       pd.Timestamp('2020-01-01 02:00:00'))

    with pytest.raises(ValueError) as err:
        mapi.interval('test-localformula-remoteseries')

    assert err.value.args[
        0] == 'no interval for series: test-localformula-remoteseries'

    meta = mapi.metadata('remote-series', all=True)
    assert meta == {
        'index_dtype': '<M8[ns]',
        'index_type': 'datetime64[ns]',
        'tzaware': False,
        'value_dtype': '<f8',
        'value_type': 'float64'
    }
    meta = mapi.metadata('test-localformula-remoteseries', all=True)
    assert meta == {
        'index_dtype': '<M8[ns]',
        'index_type': 'datetime64[ns]',
        'tzaware': False,
        'value_dtype': '<f8',
        'value_type': 'float64'
    }
示例#6
0
def test_ifunc(engine, tsh):
    @func('shifted')
    def shifted(__interpreter__, name: str, days: int = 0) -> pd.Series:
        args = __interpreter__.getargs.copy()
        fromdate = args.get('from_value_date')
        todate = args.get('to_value_date')
        if fromdate:
            args['from_value_date'] = fromdate + timedelta(days=days)
        if todate:
            args['to_value_date'] = todate + timedelta(days=days)

        return __interpreter__.get(name, args)

    @finder('shifted')
    def find_series(cn, tsh, stree):
        return {stree[1]: tsh.metadata(cn, stree[1])}

    tsh.register_formula(engine, 'shifting',
                         '(+ 0 (shifted "shiftme" #:days -1))', False)

    ts = pd.Series([1, 2, 3, 4, 5],
                   index=pd.date_range(dt(2019, 1, 1), periods=5, freq='D'))
    tsh.update(engine,
               ts,
               'shiftme',
               'Babar',
               insertion_date=utcdt(2019, 1, 1))

    ts = tsh.get(engine, 'shifting')
    assert_df(
        """
2019-01-01    1.0
2019-01-02    2.0
2019-01-03    3.0
2019-01-04    4.0
2019-01-05    5.0
""", ts)

    ts = tsh.get(engine,
                 'shifting',
                 from_value_date=dt(2019, 1, 3),
                 to_value_date=dt(2019, 1, 4))
    assert_df("""
2019-01-02    2.0
2019-01-03    3.0
""", ts)

    # now, history

    ts = pd.Series([1, 2, 3, 4, 5],
                   index=pd.date_range(dt(2019, 1, 2), periods=5, freq='D'))
    tsh.update(engine,
               ts,
               'shiftme',
               'Babar',
               insertion_date=utcdt(2019, 1, 2))
    hist = tsh.history(engine, 'shifting')
    assert_hist(
        """
insertion_date             value_date
2019-01-01 00:00:00+00:00  2019-01-01    1.0
                           2019-01-02    2.0
                           2019-01-03    3.0
                           2019-01-04    4.0
                           2019-01-05    5.0
2019-01-02 00:00:00+00:00  2019-01-01    1.0
                           2019-01-02    1.0
                           2019-01-03    2.0
                           2019-01-04    3.0
                           2019-01-05    4.0
                           2019-01-06    5.0
""", hist)

    hist = tsh.history(engine,
                       'shifting',
                       from_value_date=dt(2019, 1, 3),
                       to_value_date=dt(2019, 1, 4))
    assert_hist(
        """
insertion_date             value_date
2019-01-01 00:00:00+00:00  2019-01-03    3.0
                           2019-01-04    4.0
2019-01-02 00:00:00+00:00  2019-01-03    2.0
                           2019-01-04    3.0
""", hist)

    # cleanup
    FUNCS.pop('shifted')
示例#7
0
def test_history(engine, tsh):
    tsh.register_formula(engine, 'h-addition',
                         '(add (series "ha") (series "hb"))', False)

    for day in (1, 2, 3):
        idate = utcdt(2019, 1, day)
        for name in 'ab':
            ts = pd.Series([day] * 3,
                           index=pd.date_range(dt(2018, 1, 1),
                                               periods=3,
                                               freq='D'))
            tsh.update(engine, ts, 'h' + name, 'Babar', insertion_date=idate)

    h = tsh.history(engine, 'h-addition')
    assert_hist(
        """
insertion_date             value_date
2019-01-01 00:00:00+00:00  2018-01-01    2.0
                           2018-01-02    2.0
                           2018-01-03    2.0
2019-01-02 00:00:00+00:00  2018-01-01    4.0
                           2018-01-02    4.0
                           2018-01-03    4.0
2019-01-03 00:00:00+00:00  2018-01-01    6.0
                           2018-01-02    6.0
                           2018-01-03    6.0
""", h)

    dates = tsh.insertion_dates(engine, 'h-addition')
    assert dates == [(1, pd.Timestamp('2019-01-01 00:00:00+0000', tz='UTC')),
                     (2, pd.Timestamp('2019-01-02 00:00:00+0000', tz='UTC')),
                     (3, pd.Timestamp('2019-01-03 00:00:00+0000', tz='UTC'))]

    h = tsh.history(engine,
                    'h-addition',
                    from_insertion_date=utcdt(2019, 1, 2),
                    to_insertion_date=utcdt(2019, 1, 2),
                    from_value_date=dt(2018, 1, 2),
                    to_value_date=dt(2018, 1, 2))
    assert_hist(
        """
insertion_date             value_date
2019-01-02 00:00:00+00:00  2018-01-02    4.0
""", h)

    # let's add a priority
    tsh.register_formula(engine, 'h-priority',
                         '(priority (series "hz") (series "h-addition"))',
                         False)
    for day in (1, 2, 3):
        idate = utcdt(2019, 1, day)
        ts = pd.Series([41 + day] * 3,
                       index=pd.date_range(dt(2018, 1, 3), periods=3,
                                           freq='D'))
        tsh.update(engine, ts, 'hz', 'Babar', insertion_date=idate)

    h = tsh.history(engine, 'h-priority')
    assert_hist(
        """
insertion_date             value_date
2019-01-01 00:00:00+00:00  2018-01-01     2.0
                           2018-01-02     2.0
                           2018-01-03    42.0
                           2018-01-04    42.0
                           2018-01-05    42.0
2019-01-02 00:00:00+00:00  2018-01-01     4.0
                           2018-01-02     4.0
                           2018-01-03    43.0
                           2018-01-04    43.0
                           2018-01-05    43.0
2019-01-03 00:00:00+00:00  2018-01-01     6.0
                           2018-01-02     6.0
                           2018-01-03    44.0
                           2018-01-04    44.0
                           2018-01-05    44.0
""", h)
示例#8
0
def test_base(client):
    # insert
    series_in = genserie(utcdt(2018, 1, 1), 'H', 3)
    res = client.patch('/series/state',
                       params={
                           'name': 'test',
                           'series': util.tojson(series_in),
                           'author': 'Babar',
                           'insertion_date': utcdt(2018, 1, 1, 10),
                           'tzaware': util.tzaware_serie(series_in)
                       })

    assert res.status_code == 201

    # catalog
    res = client.get('/series/catalog')
    assert res.status_code == 200
    assert res.json == {
        'db://localhost:5433/postgres!tsh': [['test-naive', 'primary'],
                                             ['test', 'primary']]
    }

    # metadata
    res = client.get('/series/metadata?name=test')
    meta = res.json
    assert meta == {}

    res = client.get('/series/metadata?name=test&all=1')
    meta = res.json
    assert meta == {
        'index_dtype': '|M8[ns]',
        'index_type': 'datetime64[ns, UTC]',
        'tzaware': True,
        'value_dtype': '<f8',
        'value_type': 'float64'
    }

    res = client.put('/series/metadata',
                     params={
                         'metadata':
                         json.dumps({
                             'freq': 'D',
                             'description': 'banana spot price'
                         }),
                         'name':
                         'test'
                     })
    assert res.status_code == 200
    res = client.get('/series/metadata?name=test')
    meta2 = res.json
    assert meta2 == {'freq': 'D', 'description': 'banana spot price'}

    # metadata: delete by uploading an empty dict
    res = client.put('/series/metadata',
                     params={
                         'metadata': json.dumps({}),
                         'name': 'test'
                     })
    assert res.status_code == 200
    res = client.get('/series/metadata?name=test')
    meta2 = res.json
    assert meta2 == {}

    # get
    res = client.get('/series/state?name=test')
    series = util.fromjson(res.body, 'test', meta['tzaware'])
    assert_df(
        """
2018-01-01 00:00:00+00:00    0.0
2018-01-01 01:00:00+00:00    1.0
2018-01-01 02:00:00+00:00    2.0
""", series)

    # reinsert
    series_in = genserie(utcdt(2018, 1, 1, 3), 'H', 1, [3])
    res = client.patch('/series/state',
                       params={
                           'name': 'test',
                           'series': util.tojson(series_in),
                           'author': 'Babar',
                           'insertion_date': utcdt(2018, 1, 1, 13),
                           'tzaware': util.tzaware_serie(series_in)
                       })

    assert res.status_code == 200

    res = client.get('/series/state?name=test')
    series = util.fromjson(res.body, 'test', meta['tzaware'])
    assert_df(
        """
2018-01-01 00:00:00+00:00    0.0
2018-01-01 01:00:00+00:00    1.0
2018-01-01 02:00:00+00:00    2.0
2018-01-01 03:00:00+00:00    3.0
""", series)

    # checkout a past state
    res = client.get('/series/state',
                     params={
                         'name': 'test',
                         'insertion_date': utcdt(2018, 1, 1, 10)
                     })
    series = util.fromjson(res.body, 'test', meta['tzaware'])
    assert_df(
        """
2018-01-01 00:00:00+00:00    0.0
2018-01-01 01:00:00+00:00    1.0
2018-01-01 02:00:00+00:00    2.0
""", series)

    # checkout too far in the past
    res = client.get('/series/state',
                     params={
                         'name': 'test',
                         'insertion_date': utcdt(2018, 1, 1, 0)
                     })
    assert res.json is None

    # history
    res = client.get('/series/history?name=test')
    df = pd.read_json(res.body)

    # we real client would need to handle timestamp
    # tz-awareness
    assert_df(
        """
2018-01-01 10:00:00  2018-01-01 13:00:00
2018-01-01 00:00:00                  0.0                    0
2018-01-01 01:00:00                  1.0                    1
2018-01-01 02:00:00                  2.0                    2
2018-01-01 03:00:00                  NaN                    3
""", df)

    res = client.get('/series/history?name=test&format=tshpack')
    meta, hist = util.unpack_history(res.body)
    assert_hist(
        """
insertion_date             value_date               
2018-01-01 10:00:00+00:00  2018-01-01 00:00:00+00:00    0.0
                           2018-01-01 01:00:00+00:00    1.0
                           2018-01-01 02:00:00+00:00    2.0
2018-01-01 13:00:00+00:00  2018-01-01 00:00:00+00:00    0.0
                           2018-01-01 01:00:00+00:00    1.0
                           2018-01-01 02:00:00+00:00    2.0
                           2018-01-01 03:00:00+00:00    3.0
""", hist)

    # diff mode
    res = client.get('/series/history',
                     params={
                         'name': 'test',
                         'diffmode': True
                     })
    df = pd.read_json(res.body)

    assert_df(
        """
2018-01-01 10:00:00  2018-01-01 13:00:00
2018-01-01 00:00:00                  0.0                  NaN
2018-01-01 01:00:00                  1.0                  NaN
2018-01-01 02:00:00                  2.0                  NaN
2018-01-01 03:00:00                  NaN                  3.0
""", df)

    # empty range
    res = client.get('/series/history',
                     params={
                         'name': 'test',
                         'from_insertion_date': utcdt(2018, 1, 1, 11),
                         'to_insertion_date': utcdt(2018, 1, 1, 12),
                     })
    df = pd.read_json(res.body)
    assert len(df) == 0

    # insertion dates subset
    res = client.get('/series/history',
                     params={
                         'name': 'test',
                         'from_insertion_date': utcdt(2018, 1, 1, 10),
                         'to_insertion_date': utcdt(2018, 1, 1, 12),
                     })
    df = pd.read_json(res.body)

    assert_df(
        """
                     2018-01-01 10:00:00
2018-01-01 00:00:00                    0
2018-01-01 01:00:00                    1
2018-01-01 02:00:00                    2
""", df)

    # value dates subset
    res = client.get('/series/history',
                     params={
                         'name': 'test',
                         'from_value_date': utcdt(2018, 1, 1, 2),
                         'to_value_date': utcdt(2018, 1, 1, 3),
                     })
    df = pd.read_json(res.body)

    assert_df(
        """
                     2018-01-01 10:00:00  2018-01-01 13:00:00
2018-01-01 02:00:00                  2.0                    2
2018-01-01 03:00:00                  NaN                    3
""", df)

    # state/get from from/to value date restriction
    res = client.get('/series/state',
                     params={
                         'name': 'test',
                         'from_value_date': utcdt(2018, 1, 1, 1),
                         'to_value_date': utcdt(2018, 1, 1, 2)
                     })
    assert res.json == {
        '2018-01-01T01:00:00.000Z': 1.0,
        '2018-01-01T02:00:00.000Z': 2.0
    }

    series_in = genserie(utcdt(2019, 1, 1), 'H', 3)
    res = client.patch('/series/state',
                       params={
                           'name': 'test',
                           'series': util.tojson(series_in),
                           'author': 'Babar',
                           'insertion_date': utcdt(2018, 1, 2),
                           'tzaware': util.tzaware_serie(series_in),
                           'replace': True
                       })

    assert res.status_code == 200
    res = client.get('/series/state', params={'name': 'test'})
    assert res.json == {
        '2019-01-01T00:00:00.000Z': 0.0,
        '2019-01-01T01:00:00.000Z': 1.0,
        '2019-01-01T02:00:00.000Z': 2.0
    }

    res = client.get('/series/metadata',
                     params={
                         'name': 'test',
                         'type': 'interval'
                     })
    assert res.json == [
        True, '2019-01-01T00:00:00+00:00', '2019-01-01T02:00:00+00:00'
    ]

    res = client.get('/series/metadata',
                     params={
                         'name': 'test',
                         'type': 'type'
                     })
    assert res.json == 'primary'