def inverse_transform(self, X): """Compute time series corresponding to given 1d-SAX representations. Parameters ---------- X : array-like of shape (n_ts, sz_sax, 2 * d) A dataset of SAX series. Returns ------- numpy.ndarray of shape (n_ts, sz_original_ts, d) A dataset of time series corresponding to the provided representation. """ self._is_fitted() X = check_array(X, allow_nd=True) X = check_dims(X, X_fit_dims=(None, None, 2 * self._X_fit_dims_[-1]), check_n_features_only=True) X_orig = inv_transform_1d_sax( X, breakpoints_avg_middle_=self.breakpoints_avg_middle_, breakpoints_slope_middle_=self.breakpoints_slope_middle_, original_size=self._X_fit_dims_[1]) return self._unscale(X_orig)
def inverse_transform(self, X): """Compute time series corresponding to given 1d-SAX representations. Parameters ---------- X : array-like of shape (n_ts, sz_sax, 2 * d) A dataset of SAX series. Returns ------- numpy.ndarray of shape (n_ts, sz_original_ts, d) A dataset of time series corresponding to the provided representation. """ X_ = to_time_series_dataset(X, dtype=numpy.int) return inv_transform_1d_sax(X_, breakpoints_avg_middle_=self.breakpoints_avg_middle_, breakpoints_slope_middle_=self.breakpoints_slope_middle_, original_size=self.size_fitted_)