def __init__(self,
                 d_input: int,
                 d_channel: int,
                 d_model: int,
                 d_output: int,
                 q: int,
                 v: int,
                 h: int,
                 N: int,
                 dropout: float = 0.3,
                 pe: bool = False):
        """Create transformer structure from Encoder and Decoder blocks."""
        super().__init__()

        self._d_input = d_input
        self._d_channel = d_channel
        self._d_model = d_model
        self._pe = pe

        self.layers_encoding = nn.ModuleList(
            [Encoder(d_model, q, v, h, dropout=dropout) for _ in range(N)])

        # self.layers_decoding = nn.ModuleList([Decoder(d_model,
        #                                               q,
        #                                               v,
        #                                               h,
        #                                               dropout=dropout) for _ in range(N)])

        self._embedding = nn.Linear(self._d_channel, d_model)

        self._linear = nn.Linear(d_model * d_input, d_output)
    def __init__(self,
                 d_input: int,
                 d_model: int,
                 d_output: int,
                 q: int,
                 v: int,
                 h: int,
                 N: int,
                 attention_size: int = None,
                 dropout: float = 0.3,
                 chunk_mode: bool = True,
                 pe: str = None,
                 activation='nothing'):
        """Create transformer structure from Encoder and Decoder blocks."""
        super().__init__()

        self._d_model = d_model

        self.layers_encoding = nn.ModuleList([
            Encoder(d_model,
                    q,
                    v,
                    h,
                    attention_size=attention_size,
                    dropout=dropout,
                    chunk_mode=chunk_mode) for _ in range(N)
        ])
        self.layers_decoding = nn.ModuleList([
            Decoder(d_model,
                    q,
                    v,
                    h,
                    attention_size=attention_size,
                    dropout=dropout,
                    chunk_mode=chunk_mode) for _ in range(N)
        ])

        self._embedding = nn.Linear(d_input, d_model)
        self._linear = nn.Linear(d_model, d_output)
        self.softmax = nn.Softmax(dim=1)
        self.activation = activation
        pe_functions = {
            'original': generate_original_PE,
            'regular': generate_regular_PE,
        }
        self.activation_functions = {  # for last number
            'sigmoid': torch.sigmoid,
            'relu': torch.relu,
            'tanh': torch.tanh,
        }
        if pe in pe_functions.keys():
            self._generate_PE = pe_functions[pe]
        elif pe is None:
            self._generate_PE = None
        else:
            raise NameError(
                f'PE "{pe}" not understood. Must be one of {", ".join(pe_functions.keys())} or None.'
            )
示例#3
0
    def __init__(self,
                 d_input: int,
                 d_model: int,
                 d_output: int,
                 q: int,
                 v: int,
                 h: int,
                 N: int,
                 attention_size: int = None,
                 dropout: float = 0.3,
                 chunk_mode: str = 'chunk',
                 pe: str = None,
                 pe_period: int = 24):
        """Create transformer structure from Encoder and Decoder blocks."""
        super().__init__()

        self._d_model = d_model

        self.layers_encoding = nn.ModuleList([
            Encoder(d_model,
                    q,
                    v,
                    h,
                    attention_size=attention_size,
                    dropout=dropout,
                    chunk_mode=chunk_mode) for _ in range(N)
        ])
        self.layers_decoding = nn.ModuleList([
            Decoder(d_model,
                    q,
                    v,
                    h,
                    attention_size=attention_size,
                    dropout=dropout,
                    chunk_mode=chunk_mode) for _ in range(N)
        ])

        self._embedding = nn.Linear(d_input, d_model)
        self._linear = nn.Linear(d_model, d_output)

        pe_functions = {
            'original': generate_original_PE,
            'regular': generate_regular_PE,
        }

        if pe in pe_functions.keys():
            self._generate_PE = pe_functions[pe]
            self._pe_period = pe_period
        elif pe is None:
            self._generate_PE = None
        else:
            raise NameError(
                f'PE "{pe}" not understood. Must be one of {", ".join(pe_functions.keys())} or None.'
            )

        self.name = 'transformer'
示例#4
0
    def __init__(self,         # training.ipynbでは
                 d_input: int, # 37(datasetのカラム数)
                 d_model: int, # 64 Lattent dim
                 d_output: int, # 8 (datasetのoutput側のカラム数)
                 q: int, # 8
                 v: int, # 8
                 h: int, # 4
                 N: int, # 4 tencoder-decoderの重ね回数
                 attention_size: int = None,
                 dropout: float = 0.3,
                 chunk_mode: bool = True,
                 pe: str = None):
        """Create transformer structure from Encoder and Decoder blocks."""
        super().__init__()

        self._d_model = d_model

        self.layers_encoding = nn.ModuleList([Encoder(d_model,
                                                      q,
                                                      v,
                                                      h,
                                                      attention_size=attention_size,
                                                      dropout=dropout,
                                                      chunk_mode=chunk_mode) for _ in range(N)])
        self.layers_decoding = nn.ModuleList([Decoder(d_model,
                                                      q,
                                                      v,
                                                      h,
                                                      attention_size=attention_size,
                                                      dropout=dropout,
                                                      chunk_mode=chunk_mode) for _ in range(N)])

        self._embedding = nn.Linear(d_input, d_model)
        self._linear = nn.Linear(d_model, d_output)

        pe_functions = {
            'original': generate_original_PE,
            'regular': generate_regular_PE,
        }

        if pe in pe_functions.keys():
            self._generate_PE = pe_functions[pe]
        elif pe is None:
            self._generate_PE = None
        else:
            raise NameError(
                f'PE "{pe}" not understood. Must be one of {", ".join(pe_functions.keys())} or None.')
示例#5
0
    def __init__(self,
                 d_input: int,
                 d_channel: int,
                 d_model: int,
                 d_output: int,
                 q: int,
                 v: int,
                 h: int,
                 N: int,
                 dropout: float = 0.3,
                 pe: bool = False,
                 mask: bool = False):
        """Create transformer structure from Encoder and Decoder blocks."""
        super().__init__()

        self._d_input = d_input
        self._d_channel = d_channel
        self._d_model = d_model
        self._pe = pe
        self._h = h
        self._q = q

        self.layers_encoding_1 = nn.ModuleList([
            Encoder(d_model, q, v, h, dropout=dropout, mask=mask)
            for _ in range(N)
        ])

        self.layers_encoding_2 = nn.ModuleList([
            Encoder(d_model, q, v, h, dropout=dropout, mask=True)
            for _ in range(N)
        ])

        # self.layers_decoding = nn.ModuleList([Decoder(d_model,
        #                                               q,
        #                                               v,
        #                                               h,
        #                                               dropout=dropout) for _ in range(N)])

        self._embedding_channel = nn.Linear(self._d_channel, d_model)
        self._embedding_input = nn.Linear(self._d_input, d_model)

        self._linear = nn.Linear(d_model * d_input + d_model * d_channel,
                                 d_output)
        self._layerNorm = nn.LayerNorm(d_model * d_input + d_model * d_channel)
        # self._gate = nn.Linear(d_model * d_input + d_model * d_channel,2)
        self._gate = nn.Linear(d_model * d_input + d_model * d_channel, 2)

        # self._W_q = nn.Linear(d_model * d_input + d_model * d_channel,q * h)
        # self._W_k = nn.Linear(d_model * d_input + d_model * d_channel,q * h)
        # self._W_v = nn.Linear(d_model * d_input + d_model * d_channel,v * h)

        self._attention_linear = nn.Linear(
            d_model * d_input + d_model * d_channel,
            8 * d_input + 8 * d_channel)
        # self._linear_avg = nn.Linear(d_model+d_model, d_output)

        self._W_q = nn.Linear(1, q * h)
        self._W_k = nn.Linear(1, q * h)
        self._W_v = nn.Linear(1, v * h)

        # Output linear function
        # self._W_o = nn.Linear(v * h, d_model * d_input + d_model * d_channel)
        self._W_o = nn.Linear(v * h, 1)
        self._dropout = nn.Dropout(p=dropout)
    def __init__(self,
                 d_input: int,
                 d_model: int,
                 d_output: int,
                 q: int,
                 v: int,
                 h: int,
                 N_e: int,
                 N_d: int,
                 n_months: int,
                 attention_size: int = None,
                 dropout: float = 0.3,
                 chunk_mode: bool = True,
                 pe: str = None,
                 n_lag_convs=3,
                 e_days=28 * 4,
                 d_days=28):

        super().__init__()

        self._d_model = d_model
        self._inp_dropout = nn.Dropout(0.1)

        self.emb_layers = nn.ModuleList(
            [nn.Embedding(x, y) for x, y in emb_dims])
        self._lag_per_time = nn.Linear(63, n_lag_convs)

        self._e_inp_norm = nn.LayerNorm(d_input + n_lag_convs)
        self._d_inp_norm = nn.LayerNorm(d_input + n_lag_convs - 1)

        self._embedding = nn.Linear(d_input, d_model)

        self.enc_embedding = nn.Linear(d_input + n_lag_convs, d_model)
        self.dec_embedding = nn.Linear(d_input - 1 + n_lag_convs, d_model)

        self.layers_encoding = nn.ModuleList([
            Encoder(d_model,
                    q,
                    v,
                    h,
                    attention_size=attention_size,
                    dropout=dropout,
                    chunk_mode=chunk_mode) for _ in range(N_e)
        ])

        self.layers_decoding = nn.ModuleList([
            Decoder(d_model,
                    q,
                    v,
                    h,
                    n_months,
                    attention_size=attention_size,
                    dropout=dropout,
                    chunk_mode=chunk_mode) for _ in range(N_d)
        ])

        self.hist_covs = ConvModule(e_days)
        out_dim = 237
        self.out = nn.Sequential(
            nn.Linear(out_dim, out_dim // 2),
            nn.LeakyReLU(),
            nn.LayerNorm(out_dim // 2),
            nn.Linear(out_dim // 2, d_output),
        )
        #         self.out = nn.Linear(out_dim, d_output)
        pe_functions = {
            'original': generate_original_PE,
            'regular': generate_regular_PE,
        }

        if pe in pe_functions.keys():
            self._generate_PE = pe_functions[pe]
        elif pe is None:
            self._generate_PE = None
        else:
            raise NameError(
                f'PE "{pe}" not understood. Must be one of {", ".join(pe_functions.keys())} or None.'
            )