示例#1
0
def test_to_noniterative_objective():
    def f1(a, b: int) -> float:
        return a - b

    func = to_noniterative_objective(f1)
    assert func.min_better
    trial = Trial("abc", dict(b=20, a=10), dict(c=3))
    report = func.run(trial)
    assert report.trial is trial
    assert report.metric == -10
    assert report.params == trial.params
    assert report.metadata == {}

    func = to_noniterative_objective("f1", min_better=False)
    assert not func.min_better
    trial = Trial("abc", dict(b=20, a=10), dict(c=3))
    report = func.run(trial)
    assert report.trial is trial
    assert report.metric == -10
    assert report.params == trial.params
    assert report.metadata == {}

    assert -1 == func(1, 2)

    def f2(a, b: int) -> Tuple[float, Dict[str, Any]]:
        return a - b, dict(c=5)

    func = to_noniterative_objective(f2)
    trial = Trial("abc", dict(b=20, a=10), dict(c=3))
    report = func.run(trial)
    assert report.trial is trial
    assert report.metric == -10
    assert report.params == trial.params
    assert report.metadata == dict(c=5)

    def f3(t: Trial) -> TrialReport:
        return TrialReport(
            t, t.params["a"] - t.params["b"], params=dict(a=1), metadata=dict(c=6)
        )

    func = to_noniterative_objective(f3)
    trial = Trial("abc", dict(b=20, a=10), dict(c=3))
    report = func.run(trial)
    assert report.trial is trial
    assert report.metric == -10
    assert report.params == dict(a=1)
    assert report.metadata == dict(c=6)

    class F4(NonIterativeObjectiveFunc):
        def run(self, t: Trial) -> TrialReport:
            return TrialReport(
                t, t.params["a"] - t.params["b"], params=dict(a=1), metadata=dict(c=6)
            )

    f4 = F4()
    f4_ = to_noniterative_objective(f4)
    assert isinstance(f4_, F4)
    assert f4 is not f4_

    raises(TuneCompileError, lambda: to_noniterative_objective("abc"))
示例#2
0
def test_trial_report_heap():
    t1 = Trial("a", {})
    r1 = TrialReport(t1, 0.1)
    t2 = Trial("b", {})
    r2 = TrialReport(t2, 0.2)
    t3 = Trial("c", {})
    r3 = TrialReport(t3, 0.3)
    r4 = TrialReport(t3, -0.3)
    h = TrialReportHeap(min_heap=True)
    for r in [r1, r2, r3, r4]:
        h.push(r)
    assert "a" in h
    assert "x" not in h
    for r in [r4, r1, r2]:
        assert h.pop() is r
    assert 0 == len(h)

    h = TrialReportHeap(min_heap=False)
    for r in [r1, r2, r3, r4]:
        h.push(r)
    for r in [r1, r2, r4]:
        assert r in list(h.values())
    for r in [r2, r1, r4]:
        assert h.pop() is r
    assert 0 == len(h)

    # test __lt__, the sort key is sort_metric!
    r5 = TrialReport(t1, metric=0.1, sort_metric=-0.1)
    r6 = TrialReport(t2, metric=0.2, sort_metric=-0.2)
    r7 = TrialReport(t3, metric=0.3, sort_metric=-0.3)

    h = TrialReportHeap(min_heap=True)
    for r in [r7, r6, r5]:
        h.push(r)
    for r in [r7, r6, r5]:
        assert h.pop() is r
    assert 0 == len(h)

    r5 = TrialReport(t1, metric=0.1, cost=0.2, rung=5)
    r6 = TrialReport(t2, metric=0.1, cost=0.3, rung=5)
    r7 = TrialReport(t3, metric=0.1, cost=0.3, rung=6)

    h = TrialReportHeap(min_heap=True)
    for r in [r7, r6, r5]:
        h.push(r)
    for r in [r5, r6, r7]:
        assert h.pop() is r
    assert 0 == len(h)

    # equal case
    r8 = TrialReport(t1, metric=0.1, cost=0.3, rung=6)
    r9 = TrialReport(t2, metric=0.1, cost=0.3, rung=6)

    h = TrialReportHeap(min_heap=False)
    for r in [r8, r9]:
        h.push(r)
    for r in [r8, r9]:
        assert h.pop() is r
    assert 0 == len(h)
示例#3
0
def test_noniterative_objective():
    @noniterative_objective
    def f1(a, b: int) -> float:
        return a - b

    assert isinstance(f1, NonIterativeObjectiveFunc)
    trial = Trial("abc", dict(b=20, a=10), dict(c=3))
    report = f1.run(trial)
    assert report.trial is trial
    assert report.metric == -10
    assert report.params == trial.params
    assert report.metadata == {}

    func = to_noniterative_objective("f1")
    report = func.run(trial)
    assert report.trial is trial
    assert report.metric == -10
    assert report.params == trial.params
    assert report.metadata == {}

    @noniterative_objective(min_better=False)
    def f2(a, b: int) -> float:
        return a - b

    assert isinstance(f2, NonIterativeObjectiveFunc)
    assert not f2.min_better
示例#4
0
def test_encode_decode():
    p = {"a": 1, "b": Rand(1, 2)}
    trial = Trial("abc", p, {}, keys=["x", "y"], dfs={"v": ""})
    d = trial.jsondict
    assert isinstance(d["params"]["b"], dict)
    t = Trial.from_jsondict(d)
    assert isinstance(t.params["b"], Rand)
    assert ["x", "y"] == t.keys
    assert {} == t.dfs  # dfs will not be serialized
示例#5
0
def test_copy():
    trial = Trial("abc", {"a": 1})
    t1 = trial.with_dfs({"c": pd.DataFrame([[0]])})

    t2 = copy.copy(t1)
    t3 = copy.deepcopy(t1)
    assert trial.trial_id == t2.trial_id == t3.trial_id
    assert t1.dfs is t2.dfs is t3.dfs
    assert 0 == len(trial.dfs)
    assert 1 == len(t1.dfs)
    assert [] == t3.keys
示例#6
0
def test_trial():
    trial = Trial("abc", {"a": 1}, {"b": 2}, keys=["a", "b"])
    assert "abc" == trial.trial_id
    assert {"a": 1} == trial.params
    assert {"b": 2} == trial.metadata
    assert ["a", "b"] == trial.keys

    t2 = trial.with_params({"c": 3})
    assert "abc" == t2.trial_id
    assert {"c": 3} == t2.params
    assert {"b": 2} == t2.metadata
    assert ["a", "b"] == t2.keys
def test_validator():
    m = M()
    for cont in [True, False]:
        validate_iterative_objective(
            F(),
            Trial("abc", {"a": 1}),
            [3, 3, 2],
            lambda reports: [-3.0, -6.0, -8.0] ==
            [x.sort_metric for x in reports],
            continuous=cont,
            monitor=m,
        )
    assert 6 == len(m._reports)
示例#8
0
def test_trial_report():
    trial = Trial("abc", {"a": Rand(3, 4)}, {"b": 2})
    report = copy.copy(
        TrialReport(
            trial,
            metric=np.float(0.1),
            params={"c": Rand(1, 2)},
            metadata={"d": 4},
            cost=2.0,
        ))
    assert trial is report.trial
    assert 0.1 == report.metric
    assert type(report.metric) == float
    assert {"c": Rand(1, 2)} == report.params
    assert {"d": 4} == report.metadata
    assert 2.0 == report.cost
    assert 0 == report.rung
    assert 0.1 == report.sort_metric

    report = copy.deepcopy(
        TrialReport(trial,
                    metric=np.float(0.111),
                    cost=2.0,
                    rung=4,
                    sort_metric=1.23))
    assert trial is report.trial
    assert 0.111 == report.metric
    assert type(report.metric) == float
    assert {"a": Rand(3, 4)} == report.params
    assert {} == report.metadata
    assert 2.0 == report.cost
    assert 4 == report.rung

    r1 = report.generate_sort_metric(True, 2)
    r2 = report.generate_sort_metric(False, 1)
    r3 = report.with_sort_metric(0.234)
    assert 1.23 == report.sort_metric
    assert 0.11 == r1.sort_metric
    assert -0.1 == r2.sort_metric
    assert 0.234 == r3.sort_metric

    report = TrialReport.from_jsondict(report.jsondict)
    assert trial.trial_id == report.trial_id
    assert 0.111 == report.metric
    assert type(report.metric) == float
    assert {"a": Rand(3, 4)} == report.params
    assert {} == report.metadata
    assert 2.0 == report.cost

    assert 3.0 == report.with_cost(3.0).cost
    assert 5 == report.with_rung(5).rung
def test_objective_func(tmpdir):
    fs = FileSystem().opendir(str(tmpdir))
    j = J([3, 3, 2])
    f = F().copy()
    t = Trial("abc", {"a": 1})
    f.run(t, judge=j, checkpoint_basedir_fs=fs)
    assert -10 == f.v
    f.run(t, judge=j, checkpoint_basedir_fs=fs)
    assert -10 == f.v
    assert 6.0 == j.report.metric
    assert -6.0 == j.report.sort_metric
    f.run(t, judge=j, checkpoint_basedir_fs=fs)
    assert -10 == f.v
    assert 8.0 == j.report.metric
    assert -8.0 == j.report.sort_metric
示例#10
0
def _to_trail_row(data: Dict[str, Any], metadata: Dict[str,
                                                       Any]) -> Dict[str, Any]:
    key_names = sorted(k for k in data.keys() if not k.startswith(TUNE_PREFIX))
    keys = [data[k] for k in key_names]
    trials: Dict[str, Dict[str, Any]] = {}
    for param in pickle.loads(data[TUNE_DATASET_PARAMS_PREFIX]):
        p = ParamDict(
            sorted(((k, v) for k, v in param.items()), key=lambda x: x[0]))
        tid = to_uuid(keys, p)
        trials[tid] = Trial(trial_id=tid,
                            params=p,
                            metadata=metadata,
                            keys=keys).jsondict
    data[TUNE_DATASET_TRIALS] = json.dumps(list(trials.values()))
    del data[TUNE_DATASET_PARAMS_PREFIX]
    return data
示例#11
0
def test_hyperopt():
    params = dict(a=Rand(-10.0, 10.0), b=RandInt(-100, 100), c=2.0)
    trial = Trial("a", params, metadata={})
    h = HyperoptRunner(max_iter=200, seed=0)

    @noniterative_objective
    def objective(a, b, c) -> Tuple[float, Dict[str, Any]]:
        return a**2 + b**2 + c, dict(a=1)

    def v(report):
        assert report.metric < 7
        assert report.params["a"]**2 < 2
        assert report.params["b"]**2 < 2
        assert 2.0 == report.params["c"]

    validate_noniterative_objective(objective, trial, v, runner=h)
示例#12
0
def test_trial_decision():
    trial = Trial("abc", {"a": 1}, {"b": Rand(0, 2)})
    report = TrialReport(trial,
                         metric=np.float(0.1),
                         params={"c": Rand(0, 3)},
                         metadata={"d": 4})
    decision = TrialDecision(report,
                             budget=0.0,
                             should_checkpoint=True,
                             metadata={"x": 1},
                             reason="p")
    assert trial is decision.trial
    assert report is decision.report
    assert decision.should_stop
    assert decision.should_checkpoint
    assert {"x": 1} == decision.metadata
    assert "p" == decision.reason
    assert 0.0 == decision.budget

    assert copy.copy(decision) is decision
    assert copy.deepcopy(decision) is decision

    d2 = TrialDecision.from_jsondict(decision.jsondict)
    assert d2.trial_id == trial.trial_id
    assert Rand(0, 3) == d2.report.params["c"]
    assert decision.should_stop
    assert decision.should_checkpoint
    assert {"x": 1} == decision.metadata
    assert "p" == decision.reason

    decision = TrialDecision(report,
                             budget=1.0,
                             should_checkpoint=True,
                             metadata={"x": 1})
    assert 1.0 == decision.budget
    assert not decision.should_stop
示例#13
0
def rp(tid, metric, rung=0, keys=[]):
    t = Trial(tid, {}, keys=keys)
    return TrialReport(t, metric=metric, rung=rung)
示例#14
0
def test_to_trial_row():
    data1 = {
        "b":
        2,
        "a":
        1,
        TUNE_DATASET_DF_PREFIX + "x":
        "x",
        TUNE_DATASET_PARAMS_PREFIX:
        pickle.dumps([{
            "b": 10,
            "a": 11
        }, {
            "a": 11,
            "b": 10
        }, {
            "b": 100,
            "a": 110
        }], ),
    }
    res1 = _to_trail_row(data1, {"m": 1})
    trials1 = [Trial(**p) for p in json.loads(res1[TUNE_DATASET_TRIALS])]
    assert 2 == len(trials1)
    data2 = {
        "a":
        1,
        "b":
        2,
        TUNE_DATASET_DF_PREFIX + "y":
        "x",
        TUNE_DATASET_PARAMS_PREFIX:
        pickle.dumps([{
            "b": 10,
            "a": 11
        }, {
            "b": 100,
            "a": 110
        }], ),
    }
    res2 = _to_trail_row(data2, {"m": 1})
    assert TUNE_DATASET_PARAMS_PREFIX not in res2
    trials2 = [Trial(**p) for p in json.loads(res2[TUNE_DATASET_TRIALS])]
    assert 2 == len(trials2)
    assert any(trials2[0].trial_id == x.trial_id for x in trials1)
    assert any(trials2[1].trial_id == x.trial_id for x in trials1)

    data3 = {
        "a":
        10,
        "b":
        2,
        TUNE_DATASET_DF_PREFIX + "y":
        "x",
        TUNE_DATASET_PARAMS_PREFIX:
        pickle.dumps([{
            "b": 10,
            "a": 11
        }, {
            "b": 100,
            "a": 110
        }], ),
    }
    res3 = _to_trail_row(data3, {"m": 1})
    trials3 = [Trial(**p) for p in json.loads(res3[TUNE_DATASET_TRIALS])]
    assert 2 == len(trials2)
    assert not any(trials3[0].trial_id == x.trial_id for x in trials1)
    assert not any(trials3[1].trial_id == x.trial_id for x in trials1)