def fixed_invest(self, code, data_list, pe_vec): self._start_test(0, 10000) all_days, curr_month = len(data_list[0]), -1 opens, highs, lows, closes = data_list[1], data_list[2], data_list[ 3], data_list[4] for _idx in range(0, all_days): float_date = data_list[0][_idx] int_date = StockDataSource.int_date(float_date) self.print_progress(int_date) stock_data = { 'ts_code': code, 'open': opens[_idx], 'high': highs[_idx], 'low': lows[_idx], 'close': closes[_idx] } _month = StockDataSource.datetime(int_date).month self.account.ProfitDaily(int_date) if curr_month != _month: curr_month = _month self.account.Rechange(10000) kp = opens[_idx] if pe_vec[_idx] > 20.83: # sell _volume = self.account.credit / kp elif pe_vec[_idx] > 13.89: _volume = self.account.cash / kp else: _volume = self.account.cash / kp * 1.7 self._order(int_date, stock_data, _volume, kp, 0) self.curr_closes[code] = closes[_idx] self.account.UpdateValue(self.curr_closes, int_date) self.market_values.append(self.account.total_value) self.position_ratios.append(self.account.position_value / self.account.total_value) print( pandas.DataFrame(self.hist_orders, columns=[ 'date', 'trade_price', 'stop_price', 'volume', 'total_value', 'credit', 'lever', 'ts_code' ])) print( pandas.DataFrame(self.year_values, columns=['year', 'cash', 'ratio'])) self.account.status_info()
def daul_turtle0(self, code, data_list, index_long, index_short): self._start_test(self.turtle_args[2]) init_max_count = 3 all_days, long_days, _max_count = len(data_list[0]), 0, init_max_count long_state, short_state, max_value, trade_mode, high_price = 0, 0, 0, 0, 0 opens, highs, lows, closes = data_list[1], data_list[2], data_list[ 3], data_list[4] open_prices, open_dates, max_states = [], [], [] for _idx in range(self.turtle_args[2], all_days): float_date = data_list[0][_idx] int_date = StockDataSource.int_date(float_date) self.print_progress(int_date) if float_date < self.float_str or float_date > self.float_end: # self.account.ProfitDaily() self.market_values.append(self.account.total_value) self.position_ratios.append(self.account.position_value / self.account.total_value) continue # self.account.ProfitDaily(int_date) self.curr_closes[code] = closes[_idx] stock_data = { 'ts_code': code, 'key_price': index_long['key_price'][_idx], 'open': opens[_idx], 'high': highs[_idx], 'low': lows[_idx], 'close': closes[_idx] } if (not index_long['state'][_idx] or self.account.total_value < max_value * .6) and trade_mode: if self.account.total_value < max_value * .6: print(int_date, self.account.total_value / max_value) stock_data['key_price'] = closes[_idx] # if not index_long['state'][_idx] and trade_mode: if len(self.account.stocks): self.single_clear(stock_data['key_price'], stock_data, int_date) max_value = self.account.total_value if not index_long['state'][_idx]: long_state, short_state, trade_mode = 0, 0, 0 self.order_count, _max_count = 0, init_max_count max_states.append(index_long['state'][_idx - 1]) elif index_long['state'][_idx]: long_days += 1 _wave = index_long['wave'][_idx] while trade_mode in [0, 1] and long_state < index_long[ 'state'][_idx] and long_state < _max_count: # print( int_date, index_long['state'][_idx], index_short['state'][_idx], trade_mode, long_state, short_state ) long_state += 1 stock_data['key_price'] = index_long['key_price'][_idx] - ( index_long['state'][_idx] - long_state) * _wave self.open_order(int_date, stock_data, _wave, opens[_idx]) if not trade_mode: trade_mode = 1 # self.open_value = max(1000*10000, self.account.total_value) max_value = self.open_value = self.account.total_value open_prices.append(index_long['key_price'][_idx]) open_dates.append(float_date) elif index_long['state'][_idx] >= 4 and trade_mode < 2: trade_mode = 2 elif not index_short['state'][_idx-1] and index_short['state'][_idx] \ and index_long['state'][_idx] > 4 and self.order_count < 10: short_state, trade_mode = 0, 4 if len(self.account.stocks): _max_count = init_max_count else: _max_count = 1 # print( int_date, self.account.position_value, self.account.total_value ) if trade_mode == 2 and index_long['state'][_idx] >= 6 and len(open_prices) > 1 and \ (open_prices[-1] < open_prices[-2] or open_dates[-1] - open_dates[-2] > 300): trade_mode, high_price = 3, highs[_idx] # print( int_date, self.account.total_value / max_value, index_long['state'][_idx], index_short['state'][_idx] ) # print( int_date, self.order_count, long_state, index_long['state'][_idx], short_state, index_short['state'][_idx] ) if self.account.position_value > self.account.total_value * 7: trade_mode = 5 while trade_mode in [4] and short_state < index_short['state'][ _idx] and short_state < _max_count: short_state += 1 stock_data[ 'key_price'] = index_short['key_price'][_idx] - ( index_short['state'][_idx] - short_state) * _wave self.open_order(int_date, stock_data, _wave, opens[_idx]) if trade_mode == 3: if high_price < highs[_idx]: high_price = highs[_idx] if lows[_idx] < high_price - _wave * 4: self.single_clear(high_price - _wave * 4, stock_data, int_date) self.order_count = 0 self.account.UpdateValue(self.curr_closes, int_date) max_value = max(max_value, self.account.total_value) self.market_values.append(self.account.total_value) self.position_ratios.append(self.account.position_value / self.account.total_value) order_list = pandas.DataFrame(self.hist_orders, columns=[ 'date', 'trade_price', 'stop_price', 'volume', 'total_value', 'credit', 'lever', 'ts_code' ]) out_list = order_list[[ 'date', 'trade_price', 'volume', 'total_value', 'credit', 'lever' ]] for i in range(0, len(out_list), 30): print(out_list[i:i + 30]) print( pandas.DataFrame(self.year_values, columns=['year', 'cash', 'ratio'])) if len(open_dates) > len(max_states): max_states.append(index_long['state'][-1]) open_dates = list( map(lambda x: StockDataSource.str_date(x), open_dates)) print( pandas.DataFrame({ "date": open_dates, "price": open_prices, "max_state": max_states })) print( pandas.DataFrame( self.records, columns=['date', 'price', 'total', 'cash', 'profit', 'ratio'])) print('all day %d, long day %d.' % (all_days, long_days)) self.account.status_info()
def simple_daul_turtle(self, code, data_list, index_long, index_short): self._start_test() init_max_count = 3 all_days, long_days, _max_count = len(data_list[0]), 0, init_max_count long_state, max_value, trade_mode = 0, 0, 0 opens, highs, lows, closes = data_list[1], data_list[2], data_list[ 3], data_list[4] open_prices, open_dates, max_states = [], [], [] for _idx in range(self.turtle_args[0], all_days): float_date = data_list[0][_idx] int_date = StockDataSource.int_date(float_date) self.print_progress(int_date) if float_date < self.float_str or float_date > self.float_end: # self.account.ProfitDaily() self.market_values.append(self.account.total_value) self.position_ratios.append(self.account.position_value / self.account.total_value) continue self.curr_closes[code] = closes[_idx] self.account.ProfitDaily(int_date) stock_data = { 'ts_code': code, 'key_price': index_short['key_price'][_idx], 'open': opens[_idx], 'high': highs[_idx], 'low': lows[_idx], 'close': closes[_idx] } if not index_short['state'][_idx] and trade_mode: if len(self.account.stocks): self.single_clear(stock_data, int_date) long_state, trade_mode = 0, 0 self.order_count, _max_count = 0, init_max_count max_states.append(index_long['state'][_idx - 1]) elif index_short['state'][_idx]: long_days += 1 if not trade_mode: trade_mode = 1 # self.open_value = max(1000*10000, self.account.total_value) max_value = self.open_value = self.account.total_value open_prices.append(index_long['key_price'][_idx]) open_dates.append(float_date) if long_state < index_short['state'][ _idx] and long_state < _max_count: self.open_order(int_date, stock_data, index_short['wave'][_idx], stock_data['key_price'], opens[_idx]) long_state = index_short['state'][_idx] self.account.UpdateValue(self.curr_closes, int_date) max_value = max(max_value, self.account.total_value) self.market_values.append(self.account.total_value) self.position_ratios.append(self.account.position_value / self.account.total_value) order_list = pandas.DataFrame(self.hist_orders, columns=[ 'date', 'trade_price', 'stop_price', 'volume', 'total_value', 'credit', 'lever', 'ts_code' ]) out_list = order_list[[ 'date', 'trade_price', 'volume', 'total_value', 'credit', 'lever' ]] for i in range(0, len(out_list), 30): print(out_list[i:i + 30]) print( pandas.DataFrame(self.year_values, columns=['year', 'cash', 'ratio'])) if len(open_dates) > len(max_states): max_states.append(index_long['state'][-1]) print( pandas.DataFrame({ "date": open_dates, "price": open_prices, "max_state": max_states })) print( pandas.DataFrame( self.records, columns=['date', 'price', 'total', 'cash', 'profit', 'ratio'])) print('all day %d, long day %d.' % (all_days, long_days)) self.account.status_info()
def single_turtle(self, code, data_list, index_long): self._start_test(self.turtle_args[2]) self.open_value, _loss_unit, _open_unit = 0, 0, 0 dates, opens, highs, lows, closes = data_list[0], data_list[ 1], data_list[2], data_list[3], data_list[4] all_days, long_days, long_state = len(dates), 0, 0 for _idx in range(self.turtle_args[0], all_days): float_date = dates[_idx] int_date = StockDataSource.int_date(float_date) self.print_progress(int_date) if float_date < self.float_str or float_date > self.float_end: # self.account.ProfitDaily() self.market_values.append(self.account.total_value) self.position_ratios.append(self.account.position_value / self.account.total_value) continue self.curr_closes[code] = closes[_idx] self.account.ProfitDaily(int_date) stock_data = { 'ts_code': code, 'key_price': index_long['key_price'][_idx], 'open': opens[_idx], 'high': highs[_idx], 'low': lows[_idx], 'close': closes[_idx] } if not index_long['state'][_idx] and len(self.account.stocks): self.single_clear(stock_data['key_price'], stock_data, int_date) long_state = 0 _long_open = long_state < index_long['state'][ _idx] and long_state < 2 if _long_open: # and self.account.credit < self.account.total_value*2: if not long_state: self.open_value = self.account.total_value key_price = index_long['key_price'][_idx] if key_price < opens[_idx]: key_price = opens[_idx] _loss_unit = self.account.total_value * self.turtle_args[ 6] * .001 _open_unit = _loss_unit / index_long['wave'][_idx] _loss_price = key_price - index_long['wave'][ _idx] * self.turtle_args[0] if self._order(int_date, stock_data, _open_unit, key_price, _loss_price): long_state = index_long['state'][_idx] if index_long['state']: long_days += 1 self.account.UpdateValue(self.curr_closes, int_date) self.market_values.append(self.account.total_value) self.position_ratios.append(self.account.position_value / self.account.total_value) print(pandas.DataFrame(self.year_values, columns=['year', 'cash'])) print( pandas.DataFrame( self.records, columns=['date', 'price', 'total', 'cash', 'profit', 'ratio'])) # print( self.account.get_records()[[ 'order_time', 'price', 'volume', 'cash', 'credit' ]] ) print('all day %d, long day %d.' % (all_days, long_days)) self.account.status_info()
def daul_turtle1(self, code, data_list, index_long, index_short): self._start_test(self.turtle_args[2]) self.open_value, _loss_unit, _open_unit = 0, 0, 0 opens, highs, lows, closes = data_list[1], data_list[2], data_list[ 3], data_list[4] all_days, long_days, long_state, short_state, trade_mode, order_count = len( data_list[0]), 0, 0, 0, 0, 0 open_prices, open_dates, max_states = [], [], [] for _idx in range(self.turtle_args[0], all_days): float_date = data_list[0][_idx] int_date = StockDataSource.int_date(float_date) self.print_progress(int_date) if float_date < self.float_str or float_date > self.float_end: # self.account.ProfitDaily() self.market_values.append(self.account.total_value) self.position_ratios.append(self.account.position_value / self.account.total_value) continue self.curr_closes[code] = closes[_idx] self.account.ProfitDaily(int_date) stock_data = { 'ts_code': code, 'key_price': index_long['key_price'][_idx], 'open': opens[_idx], 'high': highs[_idx], 'low': lows[_idx], 'close': closes[_idx] } if not index_long['state'][_idx] and order_count: if len(self.account.stocks): self.single_clear(stock_data['key_price'], stock_data, int_date) long_state, short_state, trade_mode, order_count = 0, 0, 0, 0 max_states.append(index_long['state'][_idx - 1]) else: long_days += 1 if len(self.account.stocks) and index_long['state'][_idx] >= 6 and not trade_mode and len(open_prices) > 1 and \ (open_prices[-1] < open_prices[-2] or open_dates[-1] - open_dates[-2] > 300): self.single_clear(stock_data['key_price'], stock_data, int_date) if not index_short['state'][ _idx] and index_long['state'][_idx] > 4: short_state, trade_mode = 0, 1 _long_on = long_state < index_long['state'][ _idx] and long_state < 2 _short_on = trade_mode and short_state < index_short['state'][ _idx] and short_state < 2 if ( _long_on or _short_on ) and order_count < 8: #and self.account.credit < self.account.total_value*2: if not long_state: # or not short_state: self.open_value = max(1000 * 10000, self.account.total_value) open_prices.append(index_long['key_price'][_idx]) open_dates.append(float_date) print(int_date, order_count, long_state, short_state, index_short['state'][_idx]) if _long_on: key_price = index_long['key_price'][_idx] elif _short_on: key_price = index_short['key_price'][_idx] if key_price < opens[_idx]: key_price = opens[_idx] _total_value = max(1000 * 10000, self.account.total_value) _loss_unit = _total_value * self.turtle_args[6] * .001 _open_unit = _loss_unit / index_long['wave'][_idx] _loss_price = key_price - index_long['wave'][ _idx] * self.turtle_args[0] self._order(int_date, stock_data, _open_unit, key_price, _loss_price) order_count += 1 long_state = index_long['state'][_idx] short_state = index_short['state'][_idx] self.account.UpdateValue(self.curr_closes, int_date) self.market_values.append(self.account.total_value) self.position_ratios.append(self.account.position_value / self.account.total_value) order_list = pandas.DataFrame(self.hist_orders, columns=[ 'date', 'trade_price', 'stop_price', 'volume', 'total_value', 'credit', 'lever', 'ts_code' ]) out_list = order_list[[ 'date', 'trade_price', 'volume', 'total_value', 'credit', 'lever' ]] for i in range(0, len(out_list), 30): print(out_list[i:i + 30]) print( pandas.DataFrame(self.year_values, columns=['year', 'cash', 'ratio'])) if len(open_dates) > len(max_states): max_states.append(index_long['state'][-1]) print(open_dates) print(max_states) print( pandas.DataFrame({ "date": open_dates, "price": open_prices, "max_state": max_states })) print( pandas.DataFrame( self.records, columns=['date', 'price', 'total', 'cash', 'profit', 'ratio'])) print('all day %d, long day %d.' % (all_days, long_days)) self.account.status_info()
def fixed_invest(self, code, data_list, index_long): self._start_test(0, 10 * 10000) all_days, curr_month = len(data_list[0]), -1 opens, highs, lows, closes = data_list[1], data_list[2], data_list[ 3], data_list[4] for _idx in range(0, all_days): float_date = data_list[0][_idx] int_date = StockDataSource.int_date(float_date) self.print_progress(int_date) stock_data = { 'ts_code': code, 'open': opens[_idx], 'high': highs[_idx], 'low': lows[_idx], 'close': closes[_idx] } _month = StockDataSource.datetime(int_date).month self.account.ProfitDaily(int_date) if curr_month != _month: curr_month = _month self.account.Rechange(10000) # _open_unit = self.account.cash / opens[_idx] # _open_unit = (self.account.cash + 120000 - self.account.credit) / opens[_idx] # self._order(int_date, stock_data, _open_unit, opens[_idx], 0) # print( int_date, self.account.cash, self.account.credit ) kp = index_long['short'][_idx] * 1.05 kp = index_long['long'][_idx] * 0.95 _cash = self.account.cash + 120000 - self.account.credit if lows[_idx] < kp and _cash > kp * 100: if kp > opens[_idx]: kp = opens[_idx] # if highs[_idx] > kp and _cash > kp*100: # if kp < opens[_idx]: # kp = opens[_idx] _open_unit = _cash / kp self._order(int_date, stock_data, _open_unit, kp, 0) self.curr_closes[code] = closes[_idx] self.account.UpdateValue(self.curr_closes, int_date) self.market_values.append(self.account.total_value) self.position_ratios.append(self.account.position_value / self.account.total_value) print( pandas.DataFrame(self.hist_orders, columns=[ 'date', 'trade_price', 'stop_price', 'volume', 'total_value', 'credit', 'lever', 'ts_code' ])) print( pandas.DataFrame(self.year_values, columns=['year', 'cash', 'ratio'])) self.account.status_info()