def chambolle_pock(P, PT, data, Lambda, L, n_it, return_energy=True): """ Chambolle-Pock algorithm for the minimization of the objective function ||P*x - d||_2^2 + Lambda*TV(x) P : projection operator PT : backprojection operator Lambda : weight of the TV penalization (the higher Lambda, the more sparse is the solution) L : norm of the operator [P, Lambda*grad] (see power_method) n_it : number of iterations return_energy: if True, an array containing the values of the objective function will be returned """ sigma = 1.0 / L tau = 1.0 / L x = 0 * PT(data) p = 0 * gradient(x) q = 0 * data x_tilde = 0 * x theta = 1.0 if return_energy: en = np.zeros(n_it) for k in range(0, n_it): # Update dual variables p = proj_l2(p + sigma * gradient(x_tilde), Lambda) q = (q + sigma * P(x_tilde) - sigma * data) / (1.0 + sigma) # Update primal variables x_old = x x = x + tau * div(p) - tau * PT(q) x_tilde = x + theta * (x - x_old) # Calculate norms if return_energy: fidelity = 0.5 * norm2sq(P(x) - data) tv = norm1(gradient(x)) energy = 1.0 * fidelity + Lambda * tv en[k] = energy if VERBOSE and k % 10 == 0: print( "[%d] : energy %e \t fidelity %e \t TV %e" % (k, energy, fidelity, tv) ) if return_energy: return en, x else: return x
def power_method(P, PT, data, n_it=10): ''' Calculates the norm of operator K = [grad, P], i.e the sqrt of the largest eigenvalue of K^T*K = -div(grad) + P^T*P : ||K|| = sqrt(lambda_max(K^T*K)) P : forward projection PT : back projection data : acquired sinogram ''' x = PT(data) for k in range(0, n_it): x = PT(P(x)) - div(gradient(x)) s = sqrt(norm2sq(x)) x /= s return sqrt(s)