示例#1
0
    def test_precision(self):
        weight = np.array([[2, 8], [3, 5]])
        delay = 1.5
        delays = np.array([[delay, delay], [delay, delay]])
        init_value = [[0.9, 0.0], [0.9, 0.0]]
        resolution_simulation = 0.1
        synchronization_time = resolution_simulation * 10.0
        nb_init = (int(delay / resolution_simulation)) + 1
        initial_condition = np.array(init_value * nb_init).reshape(
            (nb_init, 2, weight.shape[0], 1))
        proxy_id = [0]
        no_proxy = [1]

        # simulation with one proxy
        np.random.seed(42)
        sim = TvbSim(weight,
                     delays,
                     proxy_id,
                     resolution_simulation,
                     synchronization_time,
                     initial_condition=initial_condition)
        time, s, result = sim(synchronization_time, rate=True)

        # full simulation
        np.random.seed(42)
        sim_ref = TvbSim(weight,
                         delays, [],
                         resolution_simulation,
                         synchronization_time,
                         initial_condition=initial_condition)
        time_ref, s_ref, result_ref = sim_ref(synchronization_time, rate=True)

        # compare with the Cosim Monitor RawCosim
        np.testing.assert_array_equal(result_ref[:, no_proxy, :],
                                      result[0][:, no_proxy, :])
        np.testing.assert_array_equal(s_ref[:, no_proxy, :], s[0][:,
                                                                  no_proxy, :])

        for i in range(0, 1000):
            time, s, result = sim(
                synchronization_time,
                rate_data=[time_ref, result_ref[:, proxy_id][:, :, 0]],
                rate=True)

            # compare with monitor delayed by synchronization_time
            np.testing.assert_array_equal(result_ref[:, no_proxy, :],
                                          result[1][:, no_proxy, :])
            np.testing.assert_array_equal(result_ref[:, proxy_id, :] * np.NAN,
                                          result[1][:, proxy_id, :])
            np.testing.assert_array_equal(s_ref, s[1])

            time_ref, s_ref, result_ref = sim_ref(synchronization_time,
                                                  rate=True)

            # compare with the Cosim Monitor RawCosim
            np.testing.assert_array_equal(result_ref[:, no_proxy, :],
                                          result[0][:, no_proxy, :])
            np.testing.assert_array_equal(s_ref[:, no_proxy, :],
                                          s[0][:, no_proxy, :])
示例#2
0
    def test_precision_delay(self):
        weight = np.array([[2, 8, 10], [0.2, 0.5, 0.1], [3, 0.6, 1]])
        delay = np.array([[0.6, 0.5, 1.0], [0.7, 0.8, 3.0], [1.0, 0.5, 0.7]])
        max = np.int(np.max(delay) * 10 + 1)
        init_value = np.array([[[0.1, 0.0], [0.1, 0.0], [0.2, 0.0]]] * max)
        initial_condition = init_value.reshape((max, 2, weight.shape[0], 1))
        resolution_simulation = 0.1
        synchronization_time = 0.1 * 4
        proxy_id = [0]
        no_proxy = [1, 2]

        # simulation with one proxy
        np.random.seed(42)
        sim = TvbSim(weight,
                     delay,
                     proxy_id,
                     resolution_simulation,
                     synchronization_time,
                     initial_condition=initial_condition)
        time, s, result = sim(synchronization_time, rate=True)

        # full simulation
        np.random.seed(42)
        sim_ref = TvbSim(weight,
                         delay, [],
                         resolution_simulation,
                         synchronization_time,
                         initial_condition=initial_condition)
        time, s_ref, result_ref = sim_ref(synchronization_time, rate=True)

        # compare with the CosimMonitor RawCosim
        np.testing.assert_array_equal(
            np.squeeze(result_ref[:, no_proxy, :], axis=2),
            np.squeeze(result[0][:, no_proxy, :], axis=2))
        np.testing.assert_array_equal(
            np.squeeze(s_ref[:, no_proxy, :], axis=2),
            np.squeeze(s[0][:, no_proxy, :], axis=2))

        for i in range(0, 1000):
            time, s, result = sim(
                synchronization_time,
                rate_data=[time, result_ref[:, proxy_id][:, :, 0]],
                rate=True)

            # compare with RawDelayed monitor, delayed by synchronization_time
            np.testing.assert_array_equal(result_ref[:, no_proxy, :],
                                          result[1][:, no_proxy, :])
            np.testing.assert_array_equal(result_ref[:, proxy_id, :] * np.NAN,
                                          result[1][:, proxy_id, :])
            np.testing.assert_array_equal(s_ref, s[1])

            time, s_ref, result_ref = sim_ref(synchronization_time, rate=True)

            # compare with the CosimMonitor RawCosim
            np.testing.assert_array_equal(result_ref[:, no_proxy, :],
                                          result[0][:, no_proxy, :])
            np.testing.assert_array_equal(s_ref[:, no_proxy, :],
                                          s[0][:, no_proxy, :])
    def test_double_precision_complex(self):
        weight = np.array([[5, 2, 4, 0], [8, 5, 4, 1], [6, 1, 7, 9], [10, 0, 5, 6]])
        delay = np.array([[7, 8, 5, 1], [10, 3, 7, 9], [4, 3, 2, 8], [9, 10, 11, 5]])
        max = np.int(np.max(delay)*10+1)
        init_value = np.array([[[0.1,0.0], [0.1,0.0], [0.2,0.0], [0.9,0.0]]] * max)
        initial_condition = init_value.reshape((max, 2, weight.shape[0], 1))
        resolution_simulation = 0.1
        synchronization_time = 0.1 * 10
        proxy_id_1 = [1]
        proxy_id_2 = [0, 2]

        # simulation with one proxy
        np.random.seed(42)
        sim_1 = TvbSim(weight, delay, proxy_id_1, resolution_simulation,
                       synchronization_time, initial_condition=initial_condition)
        time, result_1 = sim_1(synchronization_time)

        # simulation_2 with one proxy
        np.random.seed(42)
        sim_2 = TvbSim(weight, delay, proxy_id_2, resolution_simulation,
                       synchronization_time, initial_condition=initial_condition)
        time, result_2 = sim_2(synchronization_time)

        # full simulation
        np.random.seed(42)
        sim_ref = TvbSim(weight, delay, [], resolution_simulation,
                         synchronization_time, initial_condition=initial_condition)
        time_ref, result_ref = sim_ref(synchronization_time)

        # COMPARE PROXY 1
        np.testing.assert_array_equal(np.squeeze(result_ref[:, proxy_id_2, :], axis=2)[0],
                          np.squeeze(result_1[0][:, proxy_id_2, :], axis=2)[0])
        # COMPARE PROXY 2
        np.testing.assert_array_equal(np.squeeze(result_ref[:, proxy_id_1, :], axis=2)[0],
                          np.squeeze(result_2[0][:, proxy_id_1, :], axis=2)[0])

        for i in range(0, 1000):
            time, result_2 = sim_2(synchronization_time, [time, result_1[0][:, proxy_id_2][:, :, 0]])

            # compare with raw monitor delayed of synchronization_time
            np.testing.assert_array_equal(result_ref, result_2[1])

            time, result_1 = sim_1(synchronization_time, [time_ref, result_ref[:, proxy_id_1][:, :, 0]])

            # compare with raw monitor delayed of synchronization_time
            np.testing.assert_array_equal(result_ref, result_1[1])

            time_ref, result_ref = sim_ref(synchronization_time)

            # COMPARE PROXY 1
            np.testing.assert_array_equal(np.squeeze(result_ref[:, proxy_id_2, :], axis=2)[0],
                              np.squeeze(result_1[0][:, proxy_id_2, :], axis=2)[0])
            # COMPARE PROXY 2
            np.testing.assert_array_equal(np.squeeze(result_ref[:, proxy_id_1, :], axis=2)[0],
                              np.squeeze(result_2[0][:, proxy_id_1, :], axis=2)[0])
    def test_double_precision_complex_delay_update(self):
        weight = np.array([[5, 2, 4, 0], [8, 5, 4, 1], [6, 1, 7, 9], [10, 0, 5, 6]],dtype=np.float)
        delay = np.array([[7, 8, 5, 1], [9, 3, 7, 9], [4, 3, 2, 8], [9, 10, 11, 5]],dtype=np.float)
        max = np.int(np.max(delay)*10+1)
        resolution_simulation = 0.1
        time_synchronize = np.min(delay)
        proxy_id_1 = [1]
        proxy_id_2 = [0, 2]

        # simulation with one proxy
        np.random.seed(42)
        sim_1 = TvbSim(weight, delay, proxy_id_1, resolution_simulation, time_synchronize)
        time, result_1 = sim_1(time_synchronize)

        # simulation_2 with one proxy
        np.random.seed(42)
        sim_2 = TvbSim(weight, delay, proxy_id_2, resolution_simulation, time_synchronize)
        time, result_2 = sim_2(time_synchronize)

        # full simulation
        np.random.seed(42)
        sim_ref = TvbSim(weight, delay, [], resolution_simulation, time_synchronize)
        time_ref, result_ref = sim_ref(time_synchronize)

        # COMPARE PROXY 1
        np.testing.assert_array_equal(np.squeeze(result_ref[:, proxy_id_2, :], axis=2)[0],
                                      np.squeeze(result_1[0][:, proxy_id_2, :], axis=2)[0])
        # COMPARE PROXY 2
        np.testing.assert_array_equal(np.squeeze(result_ref[:, proxy_id_1, :], axis=2)[0],
                                      np.squeeze(result_2[0][:, proxy_id_1, :], axis=2)[0])

        for i in range(0, 1000):
            time, result_2 = sim_2(time_synchronize, [time, result_1[0][:, proxy_id_2][:, :, 0]])

            # compare with raw monitor delayed of time_synchronize
            np.testing.assert_array_equal(result_ref, result_2[1])

            time, result_1 = sim_1(time_synchronize, [time_ref, result_ref[:, proxy_id_1][:, :, 0]])

            # compare with raw monitor delayed of time_synchronize
            np.testing.assert_array_equal(result_ref, result_1[1])

            time_ref, result_ref = sim_ref(time_synchronize)

            # COMPARE PROXY 1
            np.testing.assert_array_equal(np.squeeze(result_ref[:, proxy_id_2, :], axis=2)[0],
                              np.squeeze(result_1[0][:, proxy_id_2, :], axis=2)[0])
            # COMPARE PROXY 2
            np.testing.assert_array_equal(np.squeeze(result_ref[:, proxy_id_1,:], axis=2)[0],
                              np.squeeze(result_2[0][:, proxy_id_1,:], axis=2)[0])
    def test_precision_multiple(self):
        weight = np.array([[5, 2, 4, 0], [8, 5, 4, 1], [6, 1, 7, 9],
                           [10, 0, 5, 6]])
        delay = np.array([[0.1, 0.1, 0.1, 0.1], [0.1, 0.1, 0.1, 0.1],
                          [0.1, 0.1, 0.1, 0.1], [0.1, 0.1, 0.1, 0.1]]) * 10
        max = np.int(np.max(delay) * 10 + 1)
        init_value = np.array(
            [[[0.1, 0.0], [0.1, 0.0], [0.2, 0.0], [0.2, 0.0]]] * max)
        initial_condition = init_value.reshape((max, 2, weight.shape[0], 1))
        resolution_simulation = 0.1
        synchronization_time = 0.1 * 5
        proxy_id = [0, 1, 2]
        no_proxy = [3]

        # simulation with one or more proxy
        np.random.seed(42)
        sim = TvbSim(weight,
                     delay,
                     proxy_id,
                     resolution_simulation,
                     synchronization_time,
                     initial_condition=initial_condition)
        time, result = sim(synchronization_time)

        # full simulation
        np.random.seed(42)
        sim_ref = TvbSim(weight,
                         delay, [],
                         resolution_simulation,
                         synchronization_time,
                         initial_condition=initial_condition)
        time, result_ref = sim_ref(synchronization_time)

        # compare with the CosimMonitor RawCosim
        np.testing.assert_array_equal(
            np.squeeze(result_ref[:, no_proxy, :], axis=1)[0],
            np.squeeze(result[0][:, no_proxy, :], axis=1)[0])

        for i in range(0, 1000):
            time, result = sim(synchronization_time,
                               [time, result_ref[:, proxy_id][:, :, 0]])

            # compare with Raw monitor delayed by synchronization_time
            np.testing.assert_array_equal(result_ref, result[1])

            time, result_ref = sim_ref(synchronization_time)

            # compare with the CosimMonitor RawCosim
            np.testing.assert_array_equal(result_ref[:, no_proxy, :],
                                          result[0][:, no_proxy, :])
示例#6
0
    def test_update_model(self):
        weight = np.array([[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1],
                           [1, 1, 1, 1]])
        delay = np.array([[1.5, 1.5, 1.5, 1.5], [1.5, 1.5, 1.5, 1.5],
                          [1.5, 1.5, 1.5, 1.5], [1.5, 1.5, 1.5, 1.5]])
        resolution_simulation = 0.1
        resolution_monitor = 1.0
        synchronization_time = 1.0
        proxy_id = [0, 1]
        firing_rate = np.array([[
            20.0, 10.0
        ]]) * 10**-3  # time units in tvb is ms so the rate is in KHz

        sim = TvbSim(weight, delay, proxy_id, resolution_simulation,
                     synchronization_time)
        time, result = sim(resolution_monitor,
                           [np.array([resolution_simulation]), firing_rate])
        for i in range(0, 100):
            time, result = sim(synchronization_time, [
                time + resolution_monitor,
                np.repeat(firing_rate.reshape(1, 2),
                          int(resolution_monitor / resolution_simulation),
                          axis=0)
            ])
        assert True
    def test_precision_delay_update(self):
        weight = np.array([[2, 8, 0], [0, 0, 0], [3, 0, 1]])
        delay = np.array([[0.6, 0.5, 1.0], [0.7, 0.8, 3.0], [1.0, 0.5, 0.7]])
        max = np.int(np.max(delay) * 10 + 1)
        init_value = np.array([[[0.1, 0.0], [0.1, 0.0], [0.2, 0.0]]] * max)
        initial_condition = init_value.reshape((max, 2, weight.shape[0], 1))
        resolution_simulation = 0.1
        synchronization_time = np.min(delay)
        proxy_id = [0]
        no_proxy = [1, 2]

        # simulation with one proxy
        np.random.seed(42)
        sim = TvbSim(weight,
                     delay,
                     proxy_id,
                     resolution_simulation,
                     synchronization_time,
                     initial_condition=initial_condition)
        time, result = sim(synchronization_time)

        # full simulation
        np.random.seed(42)
        sim_ref = TvbSim(weight,
                         delay, [],
                         resolution_simulation,
                         synchronization_time,
                         initial_condition=initial_condition)
        time, result_ref = sim_ref(synchronization_time)

        # compare with TVB Raw monitor delayed by synchronization_time
        np.testing.assert_array_equal(
            np.squeeze(result_ref[:, no_proxy, :], axis=2)[0],
            np.squeeze(result[0][:, no_proxy, :], axis=2)[0])

        for i in range(0, 1000):
            delay_input = [time, result_ref[:, proxy_id][:, :, 0]]
            time, result = sim(synchronization_time, delay_input)

            # compare with Raw monitor delayed by synchronization_time
            np.testing.assert_array_equal(result_ref, result[1])

            time, result_ref = sim_ref(synchronization_time)

            # compare with TVB Raw monitor delayed by synchronization_time
            np.testing.assert_array_equal(result_ref[:, no_proxy, :],
                                          result[0][:, no_proxy, :])
示例#8
0
    def test_update_model(self):
        weight = np.array([[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1],
                           [1, 1, 1, 1]])
        delay = np.array([[1.5, 1.5, 1.5, 1.5], [1.5, 1.5, 1.5, 1.5],
                          [1.5, 1.5, 1.5, 1.5], [1.5, 1.5, 1.5, 1.5]])
        resolution_simulation = 0.1
        synchronization_time = 1.0
        proxy_id = [0, 1]
        firing_rate = np.array([[
            20.0, 10.0
        ]]) * 10**-3  # units time in tvb is ms so the rate is in KHz

        # Test the the update function
        sim = TvbSim(weight, delay, proxy_id, resolution_simulation,
                     synchronization_time)
        time, result = sim(resolution_simulation,
                           [np.array([resolution_simulation]), firing_rate])
        for i in range(0, 100):
            time, result = sim(synchronization_time, [
                np.arange(i * synchronization_time,
                          (i + 1) * synchronization_time,
                          resolution_simulation),
                np.repeat(firing_rate.reshape(1, 2),
                          int(synchronization_time / resolution_simulation),
                          axis=0)
            ])
        assert True

        # Test a fail function due to the time of simulation too long
        with pytest.raises(ValueError):
            sim(synchronization_time, [
                np.arange(100 * synchronization_time,
                          102 * synchronization_time, resolution_simulation),
                np.repeat(
                    firing_rate.reshape(1, 2),
                    int(synchronization_time / resolution_simulation) * 2,
                    axis=0)
            ])
        # Test a fail function due to the resoulation time is not good
        with pytest.raises(ValueError):
            sim(synchronization_time, [
                np.arange(100 * synchronization_time, 101 *
                          synchronization_time, resolution_simulation * 2),
                np.repeat(
                    firing_rate.reshape(1, 2),
                    int(synchronization_time / resolution_simulation) * 2,
                    axis=0)
            ])
    def test_double_proxy_precision_simple(self):
        weight = np.array([[1, 1], [1, 1]])
        delay = np.array([[10.0, 10.0], [10.0, 10.0]])
        max = np.int(np.max(delay) * 10 + 1)
        init_value = np.array([[[0.1, 0.0], [0.1, 0.0]]] * max)
        initial_condition = init_value.reshape((max, 2, weight.shape[0], 1))
        resolution_simulation = 0.1
        synchronization_time = 0.1 * 4
        proxy_id_1 = [0]
        proxy_id_2 = [1]

        # simulation_2 with one proxy
        np.random.seed(42)
        sim_2 = TvbSim(weight,
                       delay,
                       proxy_id_2,
                       resolution_simulation,
                       synchronization_time,
                       initial_condition=initial_condition)
        time, s_2, result_2 = sim_2(synchronization_time, rate=True)

        # simulation with one proxy
        np.random.seed(42)
        sim_1 = TvbSim(weight,
                       delay,
                       proxy_id_1,
                       resolution_simulation,
                       synchronization_time,
                       initial_condition=initial_condition)
        time, s_1, result_1 = sim_1(synchronization_time, rate=True)

        # full simulation
        np.random.seed(42)
        sim_ref = TvbSim(weight,
                         delay, [],
                         resolution_simulation,
                         synchronization_time,
                         initial_condition=initial_condition)
        time_ref, s_ref, result_ref = sim_ref(synchronization_time, rate=True)

        # COMPARE PROXY 1
        np.testing.assert_array_equal(
            np.squeeze(result_ref[:, proxy_id_2, :], axis=2),
            np.squeeze(result_1[0][:, proxy_id_2, :], axis=2))
        np.testing.assert_array_equal(
            np.squeeze(s_ref[:, proxy_id_2, :], axis=2),
            np.squeeze(s_1[0][:, proxy_id_2, :], axis=2))
        # COMPARE PROXY 2
        np.testing.assert_array_equal(
            np.squeeze(result_ref[:, proxy_id_1, :], axis=2),
            np.squeeze(result_2[0][:, proxy_id_1, :], axis=2))
        np.testing.assert_array_equal(
            np.squeeze(s_ref[:, proxy_id_1, :], axis=2),
            np.squeeze(s_2[0][:, proxy_id_1, :], axis=2))

        for i in range(0, 1000):
            time, s_2, result_2 = sim_2(
                synchronization_time,
                rate_data=[time, result_1[0][:, proxy_id_2][:, :, 0]],
                rate=True)

            # compare with Raw monitor delayed by synchronization_time
            np.testing.assert_array_equal(result_ref[:, proxy_id_1, :],
                                          result_2[1][:, proxy_id_1, :])
            np.testing.assert_array_equal(
                result_ref[:, proxy_id_2, :] * np.NAN,
                result_2[1][:, proxy_id_2, :])
            np.testing.assert_array_equal(s_ref, s_2[1])

            time, s_1, result_1 = sim_1(
                synchronization_time,
                rate_data=[time_ref, result_ref[:, proxy_id_1][:, :, 0]],
                rate=True)

            # compare with Raw monitor delayed by synchronization_time
            np.testing.assert_array_equal(result_ref[:, proxy_id_2, :],
                                          result_1[1][:, proxy_id_2, :])
            np.testing.assert_array_equal(
                result_ref[:, proxy_id_1, :] * np.NAN,
                result_1[1][:, proxy_id_1, :])
            np.testing.assert_array_equal(s_ref, s_1[1])

            time_ref, s_ref, result_ref = sim_ref(synchronization_time,
                                                  rate=True)
            # COMPARE PROXY 1
            np.testing.assert_array_equal(
                np.squeeze(result_ref[:, proxy_id_2, :], axis=2),
                np.squeeze(result_1[0][:, proxy_id_2, :], axis=2))
            np.testing.assert_array_equal(
                np.squeeze(s_ref[:, proxy_id_2, :], axis=2),
                np.squeeze(s_1[0][:, proxy_id_2, :], axis=2))
            # COMPARE PROXY 2
            np.testing.assert_array_equal(
                np.squeeze(result_ref[:, proxy_id_1, :], axis=2),
                np.squeeze(result_2[0][:, proxy_id_1, :], axis=2))
            np.testing.assert_array_equal(
                np.squeeze(s_ref[:, proxy_id_1, :], axis=2),
                np.squeeze(s_2[0][:, proxy_id_1, :], axis=2))
    def test_precision_bad(self):
        weight = np.array([[2, 8], [3, 5]])
        delay = 100.0
        delays = np.array([[delay, delay], [delay, delay]])
        max = np.int(np.max(delay)*10+1)
        init_value = np.array([[0.9,0.0], [0.9,0.0]]*max)
        resolution_simulation = 0.1
        synchronization_time = 0.1 * 10.0
        nb_init = (int(delay / resolution_simulation)) + 1
        initial_condition = np.array(init_value * nb_init).reshape((nb_init, 2, weight.shape[0], 1))
        proxy_id = [0]
        no_proxy = [1]

        # simulation with one proxy
        np.random.seed(42)
        sim = TvbSim(weight, delays, proxy_id, resolution_simulation, synchronization_time,
                     initial_condition=initial_condition)
        time, result = sim(synchronization_time)

        # full simulation
        np.random.seed(42)
        sim_ref = TvbSim(weight, delays, [], resolution_simulation, synchronization_time,
                         initial_condition=initial_condition)
        time, result_ref = sim_ref(synchronization_time)

        # the results are different because the data of the proxy is wrong
        np.testing.assert_array_equal(result_ref[:, no_proxy, :], result[0][:, no_proxy, :])

        # the first part of the result are correct because the wrong result are delayed
        for i in range(0, 99):
            time, result = sim(synchronization_time, [time, np.zeros_like(result_ref[:, proxy_id][:, :, 0])])

            # compare with Raw monitor delayed by synchronization_time
            np.testing.assert_array_equal(result_ref[:, no_proxy, :], result[1][:, no_proxy, :])
            np.testing.assert_array_compare(operator.__ne__, result_ref[:, proxy_id, :], result[1][:, proxy_id, :])

            time, result_ref = sim_ref(synchronization_time)
            # compare with the CosimMonitor RawCosim
            np.testing.assert_array_equal(result_ref[:, no_proxy, :], result[0][:, no_proxy, :])

        # the result become of different value when the delayed result is computed
        for i in range(100, 1000):
            time, result = sim(synchronization_time, [time, np.zeros_like(result_ref[:, proxy_id][:, :, 0])])

            # compare with Raw monitor delayed by synchronization_time
            if i == 100: # as precedent
                np.testing.assert_array_equal(result_ref[:, no_proxy, :], result[1][:, no_proxy, :])
                np.testing.assert_array_compare(operator.__ne__, result_ref[:, proxy_id, :], result[1][:, proxy_id, :])
            elif i == 101: # the first one is the same
                np.testing.assert_array_equal(result_ref[:1, no_proxy, :], result[1][:1, no_proxy, :])
                np.testing.assert_array_compare(operator.__ne__, result_ref[1:, proxy_id, :], result[1][1:, proxy_id, :])
                np.testing.assert_array_compare(operator.__ne__, result_ref[1:, :, :], result[1][1:, :, :])
            else:
                np.testing.assert_array_compare(operator.__ne__,result_ref, result[1])

            time, result_ref = sim_ref(synchronization_time)
            # compare with the CosimMonitor RawCosim
            if i == 100: # the first one is the same
                np.testing.assert_array_equal(result_ref[:1, no_proxy, :], result[0][:1, no_proxy, :])
                np.testing.assert_array_compare(operator.__ne__,result_ref[1:, no_proxy, :], result[0][1:, no_proxy, :])
            else:
                np.testing.assert_array_compare(operator.__ne__,result_ref[:, no_proxy, :], result[0][:, no_proxy, :])