示例#1
0
    def get_filtered_datatypes(self, dt_module, dt_class, filters,
                               has_all_option, has_none_option):
        """
        Given the name from the input tree, the dataType required and a number of
        filters, return the available dataType that satisfy the conditions imposed.
        """
        index_class = getattr(sys.modules[dt_module], dt_class)()
        filters_dict = json.loads(filters)

        fields = []
        operations = []
        values = []

        for idx in range(len(filters_dict['fields'])):
            fields.append(filters_dict['fields'][idx])
            operations.append(filters_dict['operations'][idx])
            values.append(filters_dict['values'][idx])

        filter = FilterChain(fields=fields,
                             operations=operations,
                             values=values)
        project = common.get_current_project()

        form = Form(project_id=project.id, draw_ranges=True)
        data_type_gid_attr = DataTypeGidAttr(
            linked_datatype=REGISTRY.get_datatype_for_index(index_class))
        data_type_gid_attr.required = not string2bool(has_none_option)

        select_field = TraitDataTypeSelectField(
            data_type_gid_attr,
            form,
            conditions=filter,
            has_all_option=string2bool(has_all_option))

        return {'options': select_field.options()}
 def test_switch_online_help(self):
     """
     Test the switchOnlineHelp method and make sure it adds corresponding entry to UserPreferences.
     """
     self._expect_redirect('/user/profile', self.user_c.switchOnlineHelp)
     self.assertFalse(utils.string2bool(self.test_user.preferences[UserPreferences.ONLINE_HELP_ACTIVE]),
                      "Online help should be switched to False.")
示例#3
0
    def save_simulator_configuration(self, exclude_ranges, **data):
        """
        :param exclude_ranges: should be a boolean value. If it is True than the
            ranges will be excluded from the simulation parameters.

        Data is a dictionary with pairs in one of the forms:
            { 'simulator_parameters' : { $name$ : { 'value' : $value$, 'is_disabled' : true/false } },
              'burstName': $burst_name}
        
        The names for the checkboxes next to the parameter with name $name$ is always $name$_checked
        Save this dictionary in an easy to process form from which you could
        rebuild either only the selected entries, or all of the simulator tree
        with the given default values.
        """
        exclude_ranges = string2bool(str(exclude_ranges))
        burst_config = common.get_from_session(common.KEY_BURST_CONFIG)
        if BURST_NAME in data:
            burst_config.name = data[BURST_NAME]
        data = json.loads(data['simulator_parameters'])
        for entry in data:
            if exclude_ranges and (entry.endswith("_checked")
                                   or entry == RANGE_PARAMETER_1
                                   or entry == RANGE_PARAMETER_2):
                continue
            burst_config.update_simulation_parameter(entry, data[entry])
            checkbox_for_entry = entry + "_checked"
            if checkbox_for_entry in data:
                burst_config.update_simulation_parameter(
                    entry, data[checkbox_for_entry], KEY_PARAMETER_CHECKED)
    def get_operation_details(self, entity_gid, is_group=False, back_page='burst'):
        """
        Returns the HTML which contains the details for the given operation.
        """
        if string2bool(str(is_group)):
            ### we have an OperationGroup entity.
            template_specification = self._compute_operation_details(entity_gid, True)
            #I expect that all the operations from a group are visible or not
            template_specification["nodeType"] = graph_structures.NODE_OPERATION_GROUP_TYPE

        else:
            ### we have a simple Operation
            template_specification = self._compute_operation_details(entity_gid)
            template_specification["displayRelevantButton"] = True
            template_specification["nodeType"] = graph_structures.NODE_OPERATION_TYPE

        template_specification["backPageIdentifier"] = back_page
        overlay_class = "can-browse editor-node node-type-" + template_specification["nodeType"]
        if template_specification["isRelevant"]:
            overlay_class += " node-relevant"
        else:
            overlay_class += " node_irrelevant"

        template_specification = self.fill_overlay_attributes(template_specification, "Details", "Operation",
                                                              "project/details_operation_overlay", overlay_class)
        return FlowController().fill_default_attributes(template_specification)
示例#5
0
    def save_simulator_configuration(self, exclude_ranges, **data):
        """
        :param exclude_ranges: should be a boolean value. If it is True than the
            ranges will be excluded from the simulation parameters.

        Data is a dictionary with pairs in one of the forms:
            { 'simulator_parameters' : { $name$ : { 'value' : $value$, 'is_disabled' : true/false } },
              'burstName': $burst_name}
        
        The names for the checkboxes next to the parameter with name $name$ is always $name$_checked
        Save this dictionary in an easy to process form from which you could
        rebuild either only the selected entries, or all of the simulator tree
        with the given default values.
        """
        exclude_ranges = string2bool(str(exclude_ranges))
        burst_config = common.get_from_session(common.KEY_BURST_CONFIG)
        if BURST_NAME in data:
            burst_config.name = data[BURST_NAME]
        data = json.loads(data['simulator_parameters'])
        for entry in data:
            if exclude_ranges and (entry.endswith("_checked") or
                                   entry == RANGE_PARAMETER_1 or entry == RANGE_PARAMETER_2):
                continue
            burst_config.update_simulation_parameter(entry, data[entry])
            checkbox_for_entry = entry + "_checked"
            if checkbox_for_entry in data:
                burst_config.update_simulation_parameter(entry, data[checkbox_for_entry], KEY_PARAMETER_CHECKED)
    def get_operation_details(self, entity_gid, is_group=False, back_page='burst'):
        """
        Returns the HTML which contains the details for the given operation.
        """
        if string2bool(str(is_group)):
            ### we have an OperationGroup entity.
            template_specification = self._compute_operation_details(entity_gid, True)
            #I expect that all the operations from a group are visible or not
            template_specification["nodeType"] = graph_structures.NODE_OPERATION_GROUP_TYPE

        else:
            ### we have a simple Operation
            template_specification = self._compute_operation_details(entity_gid)
            template_specification["displayRelevantButton"] = True
            template_specification["nodeType"] = graph_structures.NODE_OPERATION_TYPE

        template_specification["backPageIdentifier"] = back_page
        overlay_class = "can-browse editor-node node-type-" + template_specification["nodeType"]
        if template_specification["isRelevant"]:
            overlay_class += " node-relevant"
        else:
            overlay_class += " node_irrelevant"

        template_specification = self.fill_overlay_attributes(template_specification, "Details", "Operation",
                                                              "project/details_operation_overlay", overlay_class)
        return FlowController().fill_default_attributes(template_specification)
 def test_switch_online_help(self):
     """
     Test the switchOnlineHelp method and make sure it adds corresponding entry to UserPreferences.
     """
     self._expect_redirect('/user/profile', self.user_c.switchOnlineHelp)
     self.assertFalse(utils.string2bool(self.test_user.preferences[UserPreferences.ONLINE_HELP_ACTIVE]),
                      "Online help should be switched to False.")
示例#8
0
def _deserialize_value(value):
    """
    This method takes value loaded from H5 file and transform it to TVB data. 
    
    :param value: the value that was read from the H5 file
    :returns: a TVB specific deserialized value of the input
    
    NOTE: this method was a part of TVB 1.0 hdf5storage manager, but since this
    script needs to be independent of current storage manager, we duplicate it here. 
    """
    if value is not None:
        if isinstance(value, numpy.string_):
            if len(value) == 0:
                value = None
            else:
                value = str(value)
        if isinstance(value, str):
            if value.startswith(BOOL_VALUE_PREFIX):
                # Remove bool prefix and transform to bool
                return string2bool(value[len(BOOL_VALUE_PREFIX):])
            if value.startswith(DATETIME_VALUE_PREFIX):
                # Remove datetime prefix and transform to datetime
                return string2date(value[len(DATETIME_VALUE_PREFIX):],
                                   date_format=DATE_TIME_FORMAT)
    return value
    def getfiltereddatatypes(self, name, parent_div, tree_session_key, filters):
        """
        Given the name from the input tree, the dataType required and a number of
        filters, return the available dataType that satisfy the conditions imposed.
        """
        previous_tree = self.context.get_session_tree_for_key(tree_session_key)
        if previous_tree is None:
            common.set_error_message("Adapter Interface not in session for filtering!")
            raise cherrypy.HTTPRedirect("/tvb?error=True")
        current_node = self._get_node(previous_tree, name)
        if current_node is None:
            raise Exception("Could not find node :" + name)
        datatype = current_node[ABCAdapter.KEY_DATATYPE]

        filters = json.loads(filters)
        availablefilter = json.loads(FilterChain.get_filters_for_type(datatype))
        for i, filter_ in enumerate(filters[FILTER_FIELDS]):
            #Check for filter input of type 'date' as these need to be converted
            if filter_ in availablefilter and availablefilter[filter_][FILTER_TYPE] == 'date':
                try:
                    temp_date = string2date(filters[FILTER_VALUES][i], False)
                    filters[FILTER_VALUES][i] = temp_date
                except ValueError:
                    raise
        #In order for the filter object not to "stack up" on multiple calls to
        #this method, create a deepCopy to work with
        if ABCAdapter.KEY_CONDITION in current_node:
            new_filter = copy.deepcopy(current_node[ABCAdapter.KEY_CONDITION])
        else:
            new_filter = FilterChain()
        new_filter.fields.extend(filters[FILTER_FIELDS])
        new_filter.operations.extend(filters[FILTER_OPERATIONS])
        new_filter.values.extend(filters[FILTER_VALUES])
        #Get dataTypes that match the filters from DB then populate with values
        values, total_count = InputTreeManager().populate_option_values_for_dtype(
                                    common.get_current_project().id,
                                    datatype, new_filter,
                                    self.context.get_current_step() )
        #Create a dictionary that matches what the template expects
        parameters = {ABCAdapter.KEY_NAME: name,
                      ABCAdapter.KEY_FILTERABLE: availablefilter,
                      ABCAdapter.KEY_TYPE: ABCAdapter.TYPE_SELECT,
                      ABCAdapter.KEY_OPTIONS: values,
                      ABCAdapter.KEY_DATATYPE: datatype}

        if total_count > MAXIMUM_DATA_TYPES_DISPLAYED:
            parameters[KEY_WARNING] = WARNING_OVERFLOW

        if ABCAdapter.KEY_REQUIRED in current_node:
            parameters[ABCAdapter.KEY_REQUIRED] = current_node[ABCAdapter.KEY_REQUIRED]
            if len(values) > 0 and string2bool(str(parameters[ABCAdapter.KEY_REQUIRED])):
                parameters[ABCAdapter.KEY_DEFAULT] = str(values[-1][ABCAdapter.KEY_VALUE])
        previous_selected = self.context.get_current_default(name)
        if previous_selected in [str(vv['value']) for vv in values]:
            parameters[ABCAdapter.KEY_DEFAULT] = previous_selected

        template_specification = {"inputRow": parameters, "disabled": False,
                                  "parentDivId": parent_div, common.KEY_SESSION_TREE: tree_session_key}
        return self.fill_default_attributes(template_specification)
示例#10
0
    def getfiltereddatatypes(self, name, parent_div, tree_session_key, filters):
        """
        Given the name from the input tree, the dataType required and a number of
        filters, return the available dataType that satisfy the conditions imposed.
        """
        previous_tree = self.context.get_session_tree_for_key(tree_session_key)
        if previous_tree is None:
            common.set_error_message("Adapter Interface not in session for filtering!")
            raise cherrypy.HTTPRedirect("/tvb?error=True")
        current_node = self._get_node(previous_tree, name)
        if current_node is None:
            raise Exception("Could not find node :" + name)
        datatype = current_node[ABCAdapter.KEY_DATATYPE]

        filters = json.loads(filters)
        availablefilter = json.loads(FilterChain.get_filters_for_type(datatype))
        for i, filter_ in enumerate(filters[FILTER_FIELDS]):
            # Check for filter input of type 'date' as these need to be converted
            if filter_ in availablefilter and availablefilter[filter_][FILTER_TYPE] == 'date':
                try:
                    temp_date = string2date(filters[FILTER_VALUES][i], False)
                    filters[FILTER_VALUES][i] = temp_date
                except ValueError:
                    raise
        # In order for the filter object not to "stack up" on multiple calls to
        # this method, create a deepCopy to work with
        if ABCAdapter.KEY_CONDITION in current_node:
            new_filter = copy.deepcopy(current_node[ABCAdapter.KEY_CONDITION])
        else:
            new_filter = FilterChain()
        new_filter.fields.extend(filters[FILTER_FIELDS])
        new_filter.operations.extend(filters[FILTER_OPERATIONS])
        new_filter.values.extend(filters[FILTER_VALUES])
        # Get dataTypes that match the filters from DB then populate with values
        values, total_count = InputTreeManager().populate_option_values_for_dtype(
            common.get_current_project().id,
            datatype, new_filter,
            self.context.get_current_step())
        # Create a dictionary that matches what the template expects
        parameters = {ABCAdapter.KEY_NAME: name,
                      ABCAdapter.KEY_FILTERABLE: availablefilter,
                      ABCAdapter.KEY_TYPE: ABCAdapter.TYPE_SELECT,
                      ABCAdapter.KEY_OPTIONS: values,
                      ABCAdapter.KEY_DATATYPE: datatype}

        if total_count > MAXIMUM_DATA_TYPES_DISPLAYED:
            parameters[KEY_WARNING] = WARNING_OVERFLOW

        if ABCAdapter.KEY_REQUIRED in current_node:
            parameters[ABCAdapter.KEY_REQUIRED] = current_node[ABCAdapter.KEY_REQUIRED]
            if len(values) > 0 and string2bool(str(parameters[ABCAdapter.KEY_REQUIRED])):
                parameters[ABCAdapter.KEY_DEFAULT] = str(values[-1][ABCAdapter.KEY_VALUE])
        previous_selected = self.context.get_current_default(name)
        if previous_selected in [str(vv['value']) for vv in values]:
            parameters[ABCAdapter.KEY_DEFAULT] = previous_selected

        template_specification = {"inputRow": parameters, "disabled": False,
                                  "parentDivId": parent_div, common.KEY_SESSION_TREE: tree_session_key}
        return self.fill_default_attributes(template_specification)
 def get_simple_adapter_interface(self, algorithm_id, parent_div='', is_uploader=False):
     """
     AJAX exposed method. Will return only the interface for a adapter, to
     be used when tabs are needed.
     """
     curent_project = common.get_current_project()
     is_uploader = string2bool(is_uploader)
     template_specification = self.get_adapter_template(curent_project.id, algorithm_id, is_uploader)
     template_specification[common.KEY_PARENT_DIV] = parent_div
     return self.fill_default_attributes(template_specification)
示例#12
0
 def test_string2bool(self):
     """
     Check the date2string method for various inputs.
     """
     self.assertTrue(string2bool("True"), "Expect True boolean for input 'True'")
     self.assertTrue(string2bool(u"True"), "Expect True boolean for input u'True'")
     self.assertTrue(string2bool("true"), "Expect True boolean for input 'true'")
     self.assertTrue(string2bool(u"true"), "Expect True boolean for input u'true'")
     self.assertFalse(string2bool("False"), "Expect True boolean for input 'False'")
     self.assertFalse(string2bool(u"False"), "Expect True boolean for input u'False'")
     self.assertFalse(string2bool("somethingelse"), "Expect True boolean for input 'somethingelse'")
     self.assertFalse(string2bool(u"somethingelse"), "Expect True boolean for input u'somethingelse'")
示例#13
0
 def get_simple_adapter_interface(self, algorithm_id, parent_div='', is_uploader=False):
     """
     AJAX exposed method. Will return only the interface for a adapter, to
     be used when tabs are needed.
     """
     curent_project = common.get_current_project()
     is_uploader = string2bool(is_uploader)
     template_specification = self.get_adapter_template(curent_project.id, algorithm_id, is_uploader)
     template_specification[common.KEY_PARENT_DIV] = parent_div
     return self.fill_default_attributes(template_specification)
示例#14
0
 def test_string2bool(self):
     """
     Check the date2string method for various inputs.
     """
     assert string2bool("True"), "Expect True boolean for input 'True'"
     assert string2bool("True"), "Expect True boolean for input u'True'"
     assert string2bool("true"), "Expect True boolean for input 'true'"
     assert string2bool("true"), "Expect True boolean for input u'true'"
     assert not string2bool("False"), "Expect True boolean for input 'False'"
     assert not string2bool("False"), "Expect True boolean for input u'False'"
     assert not string2bool("somethingelse"), "Expect True boolean for input 'somethingelse'"
     assert not string2bool("somethingelse"), "Expect True boolean for input u'somethingelse'"
示例#15
0
    def is_online_help_active(self):
        """
        This method returns True if this user should see online help.
        """
        is_help_active = True
        if UserPreferences.ONLINE_HELP_ACTIVE in self.preferences:
            flag_str = self.preferences[UserPreferences.ONLINE_HELP_ACTIVE]
            is_help_active = utils.string2bool(flag_str)

        return is_help_active
示例#16
0
    def is_online_help_active(self):
        """
        This method returns True if this user should see online help.
        """
        is_help_active = True
        if UserPreferences.ONLINE_HELP_ACTIVE in self.preferences:
            flag_str = self.preferences[UserPreferences.ONLINE_HELP_ACTIVE]
            is_help_active = utils.string2bool(flag_str)

        return is_help_active
 def removelink(self, link_data, project_id, is_group):
     """
     Delegate the creation of the actual link to the flow service.
     """
     if not string2bool(str(is_group)):
         self.flow_service.remove_link(link_data, project_id)
     else:
         all_data = self.project_service.get_datatype_in_group(link_data)
         for data in all_data:
             self.flow_service.remove_link(data.id, project_id)
         self.flow_service.remove_link(int(link_data), project_id)
示例#18
0
 def removelink(self, link_data, project_id, is_group):
     """
     Delegate the creation of the actual link to the flow service.
     """
     if not string2bool(str(is_group)):
         self.flow_service.remove_link(link_data, project_id)
     else:
         all_data = self.project_service.get_datatype_in_group(link_data)
         for data in all_data:
             self.flow_service.remove_link(data.id, project_id)
         self.flow_service.remove_link(int(link_data), project_id)
 def createlink(self, link_data, project_id, is_group):
     """
     Delegate the creation of the actual link to the flow service.
     """
     if not string2bool(str(is_group)):
         self.flow_service.create_link([link_data], project_id)
     else:
         all_data = self.project_service.get_datatype_in_group(link_data)
         # Link all Dts in group and the DT_Group entity
         data_ids = [data.id for data in all_data]
         data_ids.append(int(link_data))
         self.flow_service.create_link(data_ids, project_id)
示例#20
0
 def createlink(self, link_data, project_id, is_group):
     """
     Delegate the creation of the actual link to the flow service.
     """
     if not string2bool(str(is_group)):
         self.flow_service.create_link([link_data], project_id)
     else:
         all_data = self.project_service.get_datatype_in_group(link_data)
         # Link all Dts in group and the DT_Group entity
         data_ids = [data.id for data in all_data]
         data_ids.append(int(link_data))
         self.flow_service.create_link(data_ids, project_id)
示例#21
0
    def get_filtered_datatypes(self, dt_module, dt_class, filters, has_all_option, has_none_option):
        """
        Given the name from the input tree, the dataType required and a number of
        filters, return the available dataType that satisfy the conditions imposed.
        """
        index_class = getattr(sys.modules[dt_module], dt_class)()
        filters_dict = json.loads(filters)

        for idx in range(len(filters_dict['fields'])):
            if filters_dict['values'][idx] in ['True', 'False']:
                filters_dict['values'][idx] = string2bool(filters_dict['values'][idx])

        filter = FilterChain(fields=filters_dict['fields'], operations=filters_dict['operations'],
                             values=filters_dict['values'])
        project = common.get_current_project()

        data_type_gid_attr = DataTypeGidAttr(linked_datatype=REGISTRY.get_datatype_for_index(index_class))
        data_type_gid_attr.required = not string2bool(has_none_option)

        select_field = TraitDataTypeSelectField(data_type_gid_attr, conditions=filter,
                                                has_all_option=string2bool(has_all_option))
        self.algorithm_service.fill_selectfield_with_datatypes(select_field, project.id)

        return {'options': select_field.options()}
示例#22
0
    def set_visibility(self, entity_type, entity_gid, to_de_relevant):
        """
        Method used for setting the relevancy/visibility on a DataType(Group)/Operation(Group.
        """
        to_de_relevant = string2bool(to_de_relevant)
        is_operation, is_group = False, False
        if entity_type == graph_structures.NODE_OPERATION_TYPE:
            is_group = False
            is_operation = True
        elif entity_type == graph_structures.NODE_OPERATION_GROUP_TYPE:
            is_group = True
            is_operation = True

        if is_operation:
            self.project_service.set_operation_and_group_visibility(entity_gid, to_de_relevant, is_group)
        else:
            self.project_service.set_datatype_visibility(entity_gid, to_de_relevant)
    def set_visibility(self, entity_type, entity_gid, to_de_relevant):
        """
        Method used for setting the relevancy/visibility on a DataType(Group)/Operation(Group.
        """
        to_de_relevant = string2bool(to_de_relevant)
        is_operation, is_group = False, False
        if entity_type == graph_structures.NODE_OPERATION_TYPE:
            is_group = False
            is_operation = True
        elif entity_type == graph_structures.NODE_OPERATION_GROUP_TYPE:
            is_group = True
            is_operation = True

        if is_operation:
            self.project_service.set_operation_and_group_visibility(entity_gid, to_de_relevant, is_group)
        else:
            self.project_service.set_datatype_visibility(entity_gid, to_de_relevant)
示例#24
0
 def test_string2bool(self):
     """
     Chech the date2string method for various inputs.
     """
     self.assertTrue(string2bool("True"),
                     "Expect True boolean for input 'True'")
     self.assertTrue(string2bool(u"True"),
                     "Expect True boolean for input u'True'")
     self.assertTrue(string2bool("true"),
                     "Expect True boolean for input 'true'")
     self.assertTrue(string2bool(u"true"),
                     "Expect True boolean for input u'true'")
     self.assertFalse(string2bool("False"),
                      "Expect True boolean for input 'False'")
     self.assertFalse(string2bool(u"False"),
                      "Expect True boolean for input u'False'")
     self.assertFalse(string2bool("somethingelse"),
                      "Expect True boolean for input 'somethingelse'")
     self.assertFalse(string2bool(u"somethingelse"),
                      "Expect True boolean for input u'somethingelse'")
    def _deserialize_value(self, value):
        """
        This method takes value loaded from H5 file and transform it to TVB data. 
        """
        if value is not None:
            if isinstance(value, numpy.string_):
                if len(value) == 0:
                    value = None
                else:
                    value = str(value)

            if isinstance(value, str):
                if value.startswith(self.BOOL_VALUE_PREFIX):
                    # Remove bool prefix and transform to bool
                    return utils.string2bool(value[len(self.BOOL_VALUE_PREFIX):])
                if value.startswith(self.DATETIME_VALUE_PREFIX):
                    # Remove datetime prefix and transform to datetime
                    return utils.string2date(value[len(self.DATETIME_VALUE_PREFIX):], date_format=self.DATE_TIME_FORMAT)

        return value
示例#26
0
    def _deserialize_value(self, value):
        """
        This method takes value loaded from H5 file and transform it to TVB data. 
        """
        if value is not None:
            if isinstance(value, numpy.string_):
                if len(value) == 0:
                    value = None
                else:
                    value = str(value)

            if isinstance(value, str):
                if value.startswith(self.BOOL_VALUE_PREFIX):
                    # Remove bool prefix and transform to bool
                    return utils.string2bool(value[len(self.BOOL_VALUE_PREFIX):])
                if value.startswith(self.DATETIME_VALUE_PREFIX):
                    # Remove datetime prefix and transform to datetime
                    return utils.string2date(value[len(self.DATETIME_VALUE_PREFIX):], date_format=self.DATE_TIME_FORMAT)

        return value
def _deserialize_value(value):
    """
    This method takes value loaded from H5 file and transform it to TVB data. 
    
    :param value: the value that was read from the H5 file
    :returns: a TVB specific deserialized value of the input
    
    NOTE: this method was a part of TVB 1.0 hdf5storage manager, but since this
    script needs to be independent of current storage manager, we duplicate it here. 
    """
    if value is not None:
        if isinstance(value, numpy.string_):
            if len(value) == 0:
                value = None
            else:
                value = str(value)
        if isinstance(value, str):
            if value.startswith(BOOL_VALUE_PREFIX):
                # Remove bool prefix and transform to bool
                return string2bool(value[len(BOOL_VALUE_PREFIX):])
            if value.startswith(DATETIME_VALUE_PREFIX):
                # Remove datetime prefix and transform to datetime
                return string2date(value[len(DATETIME_VALUE_PREFIX):], date_format=DATE_TIME_FORMAT)
    return value
    def gettemplatefordimensionselect(self, entity_gid=None, select_name="", reset_session='False',
                                      parameters_prefix="dimensions", required_dimension=1,
                                      expected_shape="", operations=""):
        """
        Returns the HTML which contains the selects components which allows the user
        to reduce the dimension of a multi-dimensional array.

        We try to obtain the aggregation_functions from the entity, which is a list of lists.
        For each dimension should be a list with the supported aggregation functions. We
        create a DICT for each of those lists. The key will be the name of the function and
        the value will be its label.

        entity_gid 
            the GID of the entity for which is displayed the component
        
        select_name
            the name of the parent select. The select in which
            is displayed the entity with the given GID
  
        parameters_prefix 
            a string which will be used for computing the names of the component

        required_dimension
            the expected dimension for the resulted array

        expected_shape and operations
            used for applying conditions on the resulted array
            e.g.: If the resulted array is a 3D array and we want that the length of the second
            dimension to be smaller then 512 then the expected_shape and operations should be:
            ``expected_shape=x,512,x`` and ``operations='x,<,x``
        """
        template_params = {"select_name": "",
                           "data": [],
                           "parameters_prefix": parameters_prefix,
                           "array_shape": "",
                           "required_dimension": required_dimension,
                           "currentDim": "",
                           "required_dim_msg": "",
                           "expected_shape": expected_shape,
                           "operations": operations}

        #if reload => populate the selected values
        session_dict = self.context.get_current_default()
        dimensions = {1: [0], 3: [0]}
        selected_agg_functions = {}
        if not string2bool(str(reset_session)) and session_dict is not None:
            starts_with_str = select_name + "_" + parameters_prefix + "_"
            ui_sel_items = dict((k, v) for k, v in session_dict.items() if k.startswith(starts_with_str))
            dimensions, selected_agg_functions, required_dimension, _ = MappedArray().parse_selected_items(ui_sel_items)
        template_params["selected_items"] = dimensions
        template_params["selected_functions"] = selected_agg_functions

        aggregation_functions = []
        default_agg_functions = self.accepted__aggregation_functions()
        labels_set = ["Time", "Channel", "Line"]
        if entity_gid is not None:
            actual_entity = ABCAdapter.load_entity_by_gid(entity_gid)
            if hasattr(actual_entity, 'shape'):
                array_shape = actual_entity.shape
                new_shape, current_dim = self._compute_current_dimension(list(array_shape), dimensions,
                                                                         selected_agg_functions)
                if required_dimension is not None and current_dim != int(required_dimension):
                    template_params["required_dim_msg"] = "Please select a " + str(required_dimension) + "D array"
                if not current_dim:
                    template_params["currentDim"] = "1 element"
                else:
                    template_params["currentDim"] = str(current_dim) + "D array"
                template_params["array_shape"] = json.dumps(new_shape)
                if hasattr(actual_entity, 'dimensions_labels') and actual_entity.dimensions_labels is not None:
                    labels_set = actual_entity.dimensions_labels
                    #make sure there exists labels for each dimension
                    while len(labels_set) < len(array_shape):
                        labels_set.append("Undefined")
                if (hasattr(actual_entity, 'aggregation_functions') and actual_entity.aggregation_functions is not None
                        and len(actual_entity.aggregation_functions) == len(array_shape)):
                    #will be a list of lists of aggregation functions
                    defined_functions = actual_entity.aggregation_functions
                    for function in defined_functions:
                        if not len(function):
                            aggregation_functions.append({})
                        else:
                            func_dict = {}
                            for function_key in function:
                                func_dict[function_key] = default_agg_functions[function_key]
                            aggregation_functions.append(func_dict)
                else:
                    for _ in array_shape:
                        aggregation_functions.append(default_agg_functions)
                result = []
                for i, shape in enumerate(array_shape):
                    labels = []
                    values = []
                    for j in xrange(shape):
                        labels.append(labels_set[i] + " " + str(j))
                        values.append(entity_gid + "_" + str(i) + "_" + str(j))
                    result.append([labels, values, aggregation_functions[i]])
                template_params["select_name"] = select_name
                template_params["data"] = result
                return template_params

        return template_params
示例#29
0
    def gettemplatefordimensionselect(self,
                                      entity_gid=None,
                                      select_name="",
                                      reset_session='False',
                                      parameters_prefix="dimensions",
                                      required_dimension=1,
                                      expected_shape="",
                                      operations=""):
        """
        Returns the HTML which contains the selects components which allows the user
        to reduce the dimension of a multi-dimensional array.

        We try to obtain the aggregation_functions from the entity, which is a list of lists.
        For each dimension should be a list with the supported aggregation functions. We
        create a DICT for each of those lists. The key will be the name of the function and
        the value will be its label.

        entity_gid 
            the GID of the entity for which is displayed the component
        
        select_name
            the name of the parent select. The select in which
            is displayed the entity with the given GID
  
        parameters_prefix 
            a string which will be used for computing the names of the component

        required_dimension
            the expected dimension for the resulted array

        expected_shape and operations
            used for applying conditions on the resulted array
            e.g.: If the resulted array is a 3D array and we want that the length of the second
            dimension to be smaller then 512 then the expected_shape and operations should be:
            ``expected_shape=x,512,x`` and ``operations='x,&lt;,x``
        """
        template_params = {
            "select_name": "",
            "data": [],
            "parameters_prefix": parameters_prefix,
            "array_shape": "",
            "required_dimension": required_dimension,
            "currentDim": "",
            "required_dim_msg": "",
            "expected_shape": expected_shape,
            "operations": operations
        }

        #if reload => populate the selected values
        session_dict = self.context.get_current_default()
        dimensions = {1: [0], 3: [0]}
        selected_agg_functions = {}
        if not string2bool(str(reset_session)) and session_dict is not None:
            starts_with_str = select_name + "_" + parameters_prefix + "_"
            ui_sel_items = dict((k, v) for k, v in session_dict.items()
                                if k.startswith(starts_with_str))
            dimensions, selected_agg_functions, required_dimension, _ = MappedArray(
            ).parse_selected_items(ui_sel_items)
        template_params["selected_items"] = dimensions
        template_params["selected_functions"] = selected_agg_functions

        aggregation_functions = []
        default_agg_functions = self.accepted__aggregation_functions()
        labels_set = ["Time", "Channel", "Line"]
        if entity_gid is not None:
            actual_entity = ABCAdapter.load_entity_by_gid(entity_gid)
            if hasattr(actual_entity, 'shape'):
                array_shape = actual_entity.shape
                new_shape, current_dim = self._compute_current_dimension(
                    list(array_shape), dimensions, selected_agg_functions)
                if required_dimension is not None and current_dim != int(
                        required_dimension):
                    template_params[
                        "required_dim_msg"] = "Please select a " + str(
                            required_dimension) + "D array"
                if not current_dim:
                    template_params["currentDim"] = "1 element"
                else:
                    template_params["currentDim"] = str(
                        current_dim) + "D array"
                template_params["array_shape"] = json.dumps(new_shape)
                if hasattr(actual_entity, 'dimensions_labels'
                           ) and actual_entity.dimensions_labels is not None:
                    labels_set = actual_entity.dimensions_labels
                    #make sure there exists labels for each dimension
                    while len(labels_set) < len(array_shape):
                        labels_set.append("Undefined")
                if (hasattr(actual_entity, 'aggregation_functions')
                        and actual_entity.aggregation_functions is not None
                        and len(actual_entity.aggregation_functions)
                        == len(array_shape)):
                    #will be a list of lists of aggregation functions
                    defined_functions = actual_entity.aggregation_functions
                    for function in defined_functions:
                        if not len(function):
                            aggregation_functions.append({})
                        else:
                            func_dict = {}
                            for function_key in function:
                                func_dict[
                                    function_key] = default_agg_functions[
                                        function_key]
                            aggregation_functions.append(func_dict)
                else:
                    for _ in array_shape:
                        aggregation_functions.append(default_agg_functions)
                result = []
                for i, shape in enumerate(array_shape):
                    labels = []
                    values = []
                    for j in xrange(shape):
                        labels.append(labels_set[i] + " " + str(j))
                        values.append(entity_gid + "_" + str(i) + "_" + str(j))
                    result.append([labels, values, aggregation_functions[i]])
                template_params["select_name"] = select_name
                template_params["data"] = result
                return template_params

        return template_params
    def from_dict(self, dictionary, dao, user_id=None, project_gid=None):
        """
        Add specific attributes from a input dictionary.
        """

        # If user id was specified try to load it, otherwise use System account
        user = dao.get_system_user() if user_id is None else dao.get_user_by_id(user_id)
        self.fk_launched_by = user.id

        # Find parent Project
        prj_to_load = project_gid if project_gid is not None else dictionary['fk_launched_in']
        parent_project = dao.get_project_by_gid(prj_to_load)
        self.fk_launched_in = parent_project.id
        self.project = parent_project

        # Find parent Algorithm
        source_algorithm = json.loads(dictionary['fk_from_algo'])
        algorithm = dao.get_algorithm_by_module(source_algorithm['module'], source_algorithm['classname'])

        if algorithm:
            self.algorithm = algorithm
            self.fk_from_algo = algorithm.id
        else:
            # The algorithm that produced this operation no longer exists most likely due to
            # exported operation from different version. Fallback to tvb importer.
            LOG.warning("Algorithm group %s was not found in DB. Most likely cause is that archive was exported "
                        "from a different TVB version. Using fallback TVB_Importer as source of "
                        "this operation." % (source_algorithm['module'],))
            algorithm = dao.get_algorithm_by_module(TVB_IMPORTER_MODULE, TVB_IMPORTER_CLASS)
            self.fk_from_algo = algorithm.id
            dictionary['additional_info'] = ("The original parameters for this operation were: \nAdapter: %s "
                                             "\nParameters %s" % (source_algorithm['module'] + '.' +
                                                                  source_algorithm['classname'],
                                                                  dictionary['parameters']))

        # Find OperationGroup, if any
        if 'fk_operation_group' in dictionary:
            group_dict = json.loads(dictionary['fk_operation_group'])
            op_group = None
            if group_dict:
                op_group = dao.get_operationgroup_by_gid(group_dict['gid'])
                if not op_group:
                    name = group_dict['name']
                    ranges = [group_dict['range1'], group_dict['range2'], group_dict['range3']]
                    gid = group_dict['gid']
                    op_group = OperationGroup(self.fk_launched_in, name, ranges)
                    op_group.gid = gid
                    op_group = dao.store_entity(op_group)
            self.operation_group = op_group
            self.fk_operation_group = op_group.id
        else:
            self.operation_group = None
            self.fk_operation_group = None

        self.parameters = dictionary['parameters']
        self.meta_data = dictionary['meta_data']
        self.create_date = string2date(dictionary['create_date'])
        if dictionary['start_date'] != "None":
            self.start_date = string2date(dictionary['start_date'])
        if dictionary['completion_date'] != "None":
            self.completion_date = string2date(dictionary['completion_date'])
        self.status = self._parse_status(dictionary['status'])
        self.visible = string2bool(dictionary['visible'])
        self.range_values = dictionary['range_values']
        self.user_group = dictionary['user_group']
        self.additional_info = dictionary['additional_info']
        self.gid = dictionary['gid']

        return self
示例#31
0
    def from_dict(self, dictionary, dao, user_id=None, project_gid=None):
        """
        Add specific attributes from a input dictionary.
        """

        # If user id was specified try to load it, otherwise use System account
        user = dao.get_system_user(
        ) if user_id is None else dao.get_user_by_id(user_id)
        self.fk_launched_by = user.id

        # Find parent Project
        prj_to_load = project_gid if project_gid is not None else dictionary[
            'fk_launched_in']
        parent_project = dao.get_project_by_gid(prj_to_load)
        self.fk_launched_in = parent_project.id
        self.project = parent_project

        # Find parent Algorithm
        source_algorithm = json.loads(dictionary['fk_from_algo'])
        algorithm = dao.get_algorithm_by_module(source_algorithm['module'],
                                                source_algorithm['classname'])

        if algorithm:
            self.algorithm = algorithm
            self.fk_from_algo = algorithm.id
        else:
            # The algorithm that produced this operation no longer exists most likely due to
            # exported operation from different version. Fallback to tvb importer.
            LOG.warning(
                "Algorithm group %s was not found in DB. Most likely cause is that archive was exported "
                "from a different TVB version. Using fallback TVB_Importer as source of "
                "this operation." % (source_algorithm['module'], ))
            algorithm = dao.get_algorithm_by_module(TVB_IMPORTER_MODULE,
                                                    TVB_IMPORTER_CLASS)
            self.fk_from_algo = algorithm.id
            dictionary['additional_info'] = (
                "The original parameters for this operation were: \nAdapter: %s "
                "\nParameters %s" %
                (source_algorithm['module'] + '.' +
                 source_algorithm['classname'], dictionary['parameters']))

        # Find OperationGroup, if any
        if 'fk_operation_group' in dictionary:
            group_dict = json.loads(dictionary['fk_operation_group'])
            op_group = None
            if group_dict:
                op_group = dao.get_operationgroup_by_gid(group_dict['gid'])
                if not op_group:
                    name = group_dict['name']
                    ranges = [
                        group_dict['range1'], group_dict['range2'],
                        group_dict['range3']
                    ]
                    gid = group_dict['gid']
                    op_group = OperationGroup(self.fk_launched_in, name,
                                              ranges)
                    op_group.gid = gid
                    op_group = dao.store_entity(op_group)
            self.operation_group = op_group
            self.fk_operation_group = op_group.id
        else:
            self.operation_group = None
            self.fk_operation_group = None

        self.parameters = dictionary['parameters']
        self.meta_data = dictionary['meta_data']
        self.create_date = string2date(dictionary['create_date'])
        if dictionary['start_date'] != "None":
            self.start_date = string2date(dictionary['start_date'])
        if dictionary['completion_date'] != "None":
            self.completion_date = string2date(dictionary['completion_date'])
        self.status = self._parse_status(dictionary['status'])
        self.visible = string2bool(dictionary['visible'])
        self.range_values = dictionary['range_values']
        self.user_group = dictionary['user_group']
        self.additional_info = dictionary['additional_info']
        self.gid = dictionary['gid']

        return self