示例#1
0
    def launch(self, view_model):
        # type: (FourierSpectrumModel) -> dict

        self.log.debug("Plot started...")
        # these partial loads are dangerous for TS and FS instances, but efficient
        fs_input_index = self.load_entity_by_gid(view_model.input_data.hex)
        fourier_spectrum = FourierSpectrum()
        with h5.h5_file_for_index(fs_input_index) as input_h5:
            shape = list(input_h5.array_data.shape)
            fourier_spectrum.segment_length = input_h5.segment_length.load()
            fourier_spectrum.windowing_function = input_h5.windowing_function.load(
            )

        ts_index = self.load_entity_by_gid(fs_input_index.source_gid)
        state_list = ts_index.get_labels_for_dimension(1)
        if len(state_list) == 0:
            state_list = list(range(shape[1]))
        fourier_spectrum.source = TimeSeries(
            sample_period=ts_index.sample_period)

        mode_list = list(range(shape[3]))
        available_scales = ["Linear", "Logarithmic"]

        params = dict(matrix_shape=json.dumps([shape[0], shape[2]]),
                      plotName=ts_index.title,
                      url_base=self.build_h5_url(view_model.input_data.hex,
                                                 "get_fourier_data",
                                                 parameter=""),
                      xAxisName="Frequency [kHz]",
                      yAxisName="Power",
                      available_scales=available_scales,
                      state_list=state_list,
                      mode_list=mode_list,
                      normalize_list=["no", "yes"],
                      normalize="no",
                      state_variable=state_list[0],
                      mode=mode_list[0],
                      xscale=available_scales[0],
                      yscale=available_scales[0],
                      x_values=json.dumps(fourier_spectrum.frequency[slice(
                          shape[0])].tolist()),
                      xmin=fourier_spectrum.freq_step,
                      xmax=fourier_spectrum.max_freq)
        return self.build_display_result("fourier_spectrum/view", params)
示例#2
0
def test_fourier_spectrum_model_to_h5(tmph5factory, time_series_index_factory):
    fs = FourierSpectrum()

    fsm = FourierSpectrumModel(input_data=fs.gid)
    path = tmph5factory()
    h5_file = ViewModelH5(path, fsm)

    h5_file.store(fsm)
    h5_file.close()

    loaded_dt = FourierSpectrumModel()
    h5_file = ViewModelH5(path, loaded_dt)
    h5_file.load_into(loaded_dt)
    assert loaded_dt.input_data == fs.gid
    assert loaded_dt.gid == fsm.gid
示例#3
0
文件: fft.py 项目: nuuria8/tvb-root
def compute_fast_fourier_transform(time_series, segment_length,
                                   window_function, detrend):
    """
    # type: (TimeSeries, float, function, bool) -> FourierSpectrum
    Calculate the FFT of time_series broken into segments of length
    segment_length and filtered by window_function.

    Parameters
    __________

    time_series : TimeSeries
    The TimeSeries to which the FFT is to be applied.

    segment_length : float
    The segment length determines the frequency resolution of the resulting power spectra -- longer
    windows produce finer frequency resolution

    window_function : str
    Windowing functions can be applied before the FFT is performed. Default is None, possibilities are: 'hamming';
    'bartlett';'blackman'; and 'hanning'. See, numpy.<function_name>.

    detrend : bool
    Default is True, False means no detrending is performed on the time series.
    """

    tpts = time_series.data.shape[0]
    time_series_length = tpts * time_series.sample_period

    # Segment time-series, overlapping if necessary
    nseg = int(numpy.ceil(time_series_length / segment_length))
    if nseg > 1:
        seg_tpts = numpy.ceil(segment_length / time_series.sample_period)
        overlap = (seg_tpts * nseg - tpts) / (nseg - 1.0)
        starts = [max(seg * (seg_tpts - overlap), 0) for seg in range(nseg)]
        segments = [
            time_series.data[int(start):int(start) + int(seg_tpts)]
            for start in starts
        ]
        segments = [segment[:, :, :, :, numpy.newaxis] for segment in segments]
        ts = numpy.concatenate(segments, axis=4)
    else:
        segment_length = time_series_length
        ts = time_series.data[:, :, :, :, numpy.newaxis]
        seg_tpts = ts.shape[0]

    log.debug("Segment length being used is: %s" % segment_length)

    # Base-line correct the segmented time-series
    if detrend:
        ts = scipy.signal.detrend(ts, axis=0)
        log.debug("time_series " + narray_describe(ts))

    # Apply windowing function
    if window_function is not None:
        wf = SUPPORTED_WINDOWING_FUNCTIONS[window_function]
        window_mask = numpy.reshape(wf(int(seg_tpts)),
                                    (int(seg_tpts), 1, 1, 1, 1))
        ts = ts * window_mask

    # Calculate the FFT
    result = numpy.fft.fft(ts, axis=0)
    nfreq = result.shape[0] // 2
    result = result[1:nfreq + 1, :]

    log.debug("result " + narray_describe(result))

    spectra = FourierSpectrum(source=time_series,
                              segment_length=segment_length,
                              array_data=result,
                              windowing_function=window_function)
    spectra.configure()

    return spectra
示例#4
0
文件: fft.py 项目: nedkab/tvb-root
    def evaluate(self):
        """
        Calculate the FFT of time_series broken into segments of length
        segment_length and filtered by window_function.
        """

        tpts = self.time_series.data.shape[0]
        time_series_length = tpts * self.time_series.sample_period

        # Segment time-series, overlapping if necessary
        nseg = int(numpy.ceil(time_series_length / self.segment_length))
        if nseg > 1:
            seg_tpts = numpy.ceil(self.segment_length /
                                  self.time_series.sample_period)
            overlap = (seg_tpts * nseg - tpts) / (nseg - 1.0)
            starts = [
                max(seg * (seg_tpts - overlap), 0) for seg in range(nseg)
            ]
            segments = [
                self.time_series.data[int(start):int(start) + int(seg_tpts)]
                for start in starts
            ]
            segments = [
                segment[:, :, :, :, numpy.newaxis] for segment in segments
            ]
            time_series = numpy.concatenate(segments, axis=4)
        else:
            self.segment_length = time_series_length
            time_series = self.time_series.data[:, :, :, :, numpy.newaxis]
            seg_tpts = time_series.shape[0]

        self.log.debug("Segment length being used is: %s" %
                       self.segment_length)

        # Base-line correct the segmented time-series
        if self.detrend:
            time_series = scipy.signal.detrend(time_series, axis=0)
            self.log.debug("time_series " + narray_describe(time_series))

        # Apply windowing function
        if self.window_function is not None:
            window_function = SUPPORTED_WINDOWING_FUNCTIONS[
                self.window_function]
            window_mask = numpy.reshape(window_function(int(seg_tpts)),
                                        (int(seg_tpts), 1, 1, 1, 1))
            time_series = time_series * window_mask

        # Calculate the FFT
        result = numpy.fft.fft(time_series, axis=0)
        nfreq = result.shape[0] // 2
        result = result[1:nfreq + 1, :]

        self.log.debug("result " + narray_describe(result))

        spectra = FourierSpectrum(source=self.time_series,
                                  segment_length=self.segment_length,
                                  array_data=result,
                                  windowing_function=self.window_function)
        spectra.configure()

        return spectra