def update_params(self, loc=0.0, scale=1.0, use="scipy", **params): self.__update_params__( loc, scale, use, mu=make_float(params.get("mu", params.get("loc", self.mu))), sigma=make_float( params.get("sigma", params.get("scale", self.sigma))))
def __init__(self, **params): self.type = ProbabilityDistributionTypes.NORMAL self.scipy_name = "norm" self.numpy_name = ProbabilityDistributionTypes.NORMAL self.mu = make_float(params.get("mu", params.get("loc", 0.0))) self.sigma = make_float( make_float(params.get("sigma", params.get("scale", 1.0)))) self.constraint_string = "sigma > 0" self.__update_params__(mu=self.mu, sigma=self.sigma)
def update_params(self, loc=0.0, scale=1.0, use="scipy", **params): self.__update_params__( loc, scale, use, alpha=make_float(params.get("alpha", params.get("a", self.alpha))), beta=make_float(params.get("beta", params.get("b", self.beta)))) self.a = self.alpha self.b = self.beta
def __init__(self, **params): self.type = ProbabilityDistributionTypes.BETA self.scipy_name = ProbabilityDistributionTypes.BETA self.numpy_name = ProbabilityDistributionTypes.BETA self.constraint_string = "alpha > 0 and beta > 0" self.alpha = make_float(params.get("alpha", params.get("a", 2.0))) self.beta = make_float(params.get("beta", params.get("b", 2.0))) self.a = self.alpha self.b = self.beta self.__update_params__(alpha=self.alpha, beta=self.beta)
def update_params(self, loc=0.0, scale=1.0, use="scipy", **params): self.__update_params__( loc, scale, use, mu=make_float( params.get("mu", np.log(params.get("scale", np.exp(self.mu))))), sigma=make_float( params.get("sigma", params.get("shape", self.shape)))) self.shape = self.sigma
def __init__(self, **params): self.type = ProbabilityDistributionTypes.GAMMA self.scipy_name = ProbabilityDistributionTypes.GAMMA self.numpy_name = ProbabilityDistributionTypes.GAMMA self.constraint_string = "alpha > 0 and beta > 0" self.alpha = make_float( params.get("alpha", params.get("k", params.get("shape", 2.0)))) self.beta = make_float( params.get( "beta", params.get("rate", 1.0 / params.get("theta", params.get("scale", 0.5))))) self.k = self.alpha self.theta = 1.0 / self.beta self.__update_params__(alpha=self.alpha, theta=self.theta)
def update_params(self, loc=0.0, scale=1.0, use="scipy", **params): self.__update_params__( loc, scale, use, a=make_float( params.get("a", params.get("low", params.get("loc", self.a)))), b=make_float( params.get( "b", params.get("high", params.get("scale", self.b - self.a) + self.a)))) self.low = self.a self.high = self.b
def __init__(self, **params): self.type = ProbabilityDistributionTypes.BERNOULLI self.scipy_name = ProbabilityDistributionTypes.BERNOULLI self.numpy_name = "" self.constraint_string = "0 < p < 1" self.p = make_float(params.get("p", 0.5)) self.__update_params__(p=self.p)
def update_params(self, loc=0.0, scale=1.0, use="scipy", **params): self.__update_params__( loc, scale, use, alpha=make_float( params.get("alpha", params.get("k", params.get("shape", self.alpha)))), beta=make_float( params.get( "beta", 1.0 / params.get( "theta", params.get("scale", params.get("rate", 1.0 / self.beta)))))) self.k = self.alpha self.theta = 1.0 / self.beta
def __init__(self, **params): self.type = ProbabilityDistributionTypes.EXPONENTIAL self.scipy_name = "expon" self.numpy_name = ProbabilityDistributionTypes.EXPONENTIAL self.constraint_string = "scale > 0" self.lamda = make_float(params.get("lamda", params.get("rate", 1.0 / params.get("scale", 1.0)))) self.rate = self.lamda self.__update_params__(lamda=self.lamda)
def __init__(self, **params): self.type = ProbabilityDistributionTypes.BINOMIAL self.scipy_name = "binom" self.numpy_name = ProbabilityDistributionTypes.BINOMIAL self.constraint_string = "n > 0 and 0 < p < 1" self.n = make_int(params.get("n", 1)) self.p = make_float(params.get("p", 0.5)) self.__update_params__(n=self.n, p=self.p)
def __init__(self, **params): self.type = ProbabilityDistributionTypes.POISSON self.scipy_name = ProbabilityDistributionTypes.POISSON self.numpy_name = ProbabilityDistributionTypes.POISSON self.lamda = make_float( params.get("lamda", params.get("lam", params.get("mu", 0.5)))) self.constraint_string = "0 < lamda < 1" self.__update_params__(lamda=self.lamda) self.mu = self.lamda
def __init__(self, **params): self.type = ProbabilityDistributionTypes.UNIFORM self.scipy_name = ProbabilityDistributionTypes.UNIFORM self.numpy_name = ProbabilityDistributionTypes.UNIFORM self.constraint_string = "a < b" self.a = make_float( params.get("a", params.get("low", params.get("loc", DEFAULT_LOW_VALUE)))) self.b = make_float( params.get( "b", params.get( "high", params.get("scale", 2.0 * DEFAULT_HIGH_VALUE) - DEFAULT_HIGH_VALUE))) self.__update_params__(a=self.a, b=self.b) self.low = self.a self.high = self.b
def update_params(self, loc=0.0, scale=1.0, use="scipy", **params): self.__update_params__(loc, scale, use, lamda=make_float( params.get( "lamda", params.get("lam", params.get("mu", self.lamda))))) self.mu = self.lamda
def update_params(self, loc=0.0, scale=1.0, use="scipy", **params): self.__update_params__(loc, scale, use, n=make_int(params.get("n", self.n)), p=make_float(params.get("p", self.p)))
def _update_params(self, use="scipy", **params): self.loc = make_float(params.pop("loc", self.loc)) self.scale = make_float(params.pop("scale", self.scale)) self.update_params(self.loc, self.scale, use=use, **params) return self
def update_params(self, loc=0.0, scale=1.0, use="scipy", **params): self.__update_params__(loc, scale, use, lamda=make_float(params.get("lamda", params.get("rate", 1.0 / params.get("scale", 1.0 / self.lamda))))) self.rate = self.lamda