示例#1
0
def test_sketch_search_policy_custom_sketch():
    def meet_condition_func(search_policy, state, stage_id):
        return auto_scheduler.PreloadCustomSketchRule.APPLY_AND_SKIP_REST

    def apply_func(search_policy, state, stage_id):
        ret = []
        state = auto_scheduler.loop_state.State(
            state, search_policy.search_task.compute_dag)
        C = state.stage_ops[2]

        ret.append([state.state_object, -1])

        s1 = state.copy()
        i, _, _ = s1[C].iters
        s1.split(C, i, [8])
        ret.append([s1.state_object, -1])
        return ret

    search_common(
        cost_model=auto_scheduler.XGBModel(),
        init_search_callbacks=[
            auto_scheduler.PreloadCustomSketchRule(meet_condition_func,
                                                   apply_func)
        ],
    )
示例#2
0
def test_xgb_model():
    task, inputs, results = get_sample_records(50)

    model = auto_scheduler.XGBModel(num_warmup_sample=-1)
    model.update(inputs, results)
    preds = model.predict(task, [x.state for x in inputs])
    assert len(preds) == len(inputs)

    costs = [np.mean([x.value for x in res.costs]) for res in results]
    throughputs = np.min(costs) / costs

    # test regression quality
    rmse = np.sqrt(np.mean([np.square(pred - label) for pred, label in zip(preds, throughputs)]))
    assert rmse <= 0.3

    # test loading a record file
    tmpdir = tvm.contrib.utils.tempdir()
    tmpfile = tmpdir.relpath("test1")
    auto_scheduler.save_records(tmpfile, inputs, results)
    model.update_from_file(tmpfile)

    # test model serialization
    tmpfile = tmpdir.relpath("test2")
    model.save(tmpfile)
    model.load(tmpfile)
示例#3
0
def run_tuning():
    print("Begin tuning...")
    tuner = auto_scheduler.TaskScheduler(tasks, task_weights)
    tune_option = auto_scheduler.TuningOptions(
        num_measure_trials=
        200,  # change this to 20000 to achieve the best performance
        runner=auto_scheduler.LocalRunner(repeat=10,
                                          enable_cpu_cache_flush=True),
        measure_callbacks=[auto_scheduler.RecordToFile(log_file)],
    )

    if use_sparse:
        from tvm.topi.sparse.utils import sparse_sketch_rules

        search_policy = [
            auto_scheduler.SketchPolicy(
                task,
                program_cost_model=auto_scheduler.XGBModel(),
                init_search_callbacks=sparse_sketch_rules(),
            ) for task in tasks
        ]

        tuner.tune(tune_option, search_policy=search_policy)
    else:
        tuner.tune(tune_option)
示例#4
0
def test_sketch_search_policy_xgbmodel():
    # wrap the search in a new thread to avoid the conflict
    # between python's multiprocessing and tvm's thread pool
    t = PropagatingThread(target=search_common,
                          kwargs={'seed': 944563397, 'search_policy': 'sketch',
                                  'cost_model': auto_scheduler.XGBModel()})
    t.start()
    t.join()
def resume_search(task, log_file):
    print("Resume search:")
    cost_model = auto_scheduler.XGBModel()
    cost_model.update_from_file(log_file)
    search_policy = auto_scheduler.SketchPolicy(
        task, cost_model, init_search_callbacks=[auto_scheduler.PreloadMeasuredStates(log_file)]
    )
    tune_option = auto_scheduler.TuningOptions(
        num_measure_trials=5, measure_callbacks=[auto_scheduler.RecordToFile(log_file)]
    )
    task.tune(tune_option, search_policy=search_policy)
示例#6
0
def test_sketch_search_policy_cuda_xgbmodel_rpc_runner():
    if not tvm.runtime.enabled("cuda"):
        return
    measure_ctx = auto_scheduler.LocalRPCMeasureContext()
    # wrap the search in a new thread to avoid the conflict
    # between python's multiprocessing and tvm's thread pool
    t = PropagatingThread(target=search_common,
                          kwargs={'seed': 944563397, 'search_policy': 'sketch', 'target': 'cuda',
                                  'runner': measure_ctx.runner, 'cost_model': auto_scheduler.XGBModel()})
    t.start()
    t.join()
示例#7
0
def test_sketch_search_policy_cuda_xgbmodel_rpc_runner():
    measure_ctx = auto_scheduler.LocalRPCMeasureContext()
    # wrap the search in a new thread to avoid the conflict
    # between python's multiprocessing and tvm's thread pool
    t = PropagatingThread(
        target=search_common,
        kwargs={
            "target": "cuda",
            "runner": measure_ctx.runner,
            "cost_model": auto_scheduler.XGBModel(),
        },
    )
    t.start()
    t.join()
示例#8
0
def resume_search(task, logfile_name):
    cost_model = auto_scheduler.XGBModel()
    cost_model.update_from_file(logfile_name)
    search_policy = auto_scheduler.SketchPolicy(
        task,
        cost_model,
        init_search_callbacks=[
            auto_scheduler.PreloadMeasuredStates(logfile_name)
        ])
    tune_option = auto_scheduler.TuningOptions(
        num_measure_trials=5,
        measure_callbacks=[auto_scheduler.RecordToFile(logfile_name)])
    sch, args = auto_scheduler.auto_schedule(task,
                                             search_policy,
                                             tuning_options=tune_option)
示例#9
0
def resume_search(task, log_file):
    print("Resume search:")
    cost_model = auto_scheduler.XGBModel()
    cost_model.update_from_file(log_file)
    search_policy = auto_scheduler.SketchPolicy(
        task, cost_model, init_search_callbacks=[auto_scheduler.PreloadMeasuredStates(log_file)]
    )
    measure_ctx = auto_scheduler.LocalRPCMeasureContext(min_repeat_ms=300)
    tune_option = auto_scheduler.TuningOptions(
        num_measure_trials=5,
        runner=measure_ctx.runner,
        measure_callbacks=[auto_scheduler.RecordToFile(log_file)],
    )
    task.tune(tune_option, search_policy=search_policy)

    # Kill the measurement process
    del measure_ctx
def test_xgb_model():
    task, dag, inputs, results = get_sample_records(50)

    model = auto_scheduler.XGBModel(num_warmup_sample=-1)
    model.update(inputs, results)
    preds = model.predict(task, [x.state for x in inputs])
    assert len(preds) == len(inputs)

    costs = [np.mean([x.value for x in res.costs]) for res in results]
    throughputs = np.min(costs) / costs

    rmse = np.sqrt(np.mean([np.square(pred - label) for pred, label in zip(preds, throughputs)]))
    assert rmse <= 0.3

    with tempfile.NamedTemporaryFile() as fp:
        auto_scheduler.save_records(fp.name, inputs, results)
        model.update_from_file(fp.name)

    with tempfile.NamedTemporaryFile() as fp:
        model.save(fp.name)
        model.load(fp.name)
示例#11
0
#   The measurement records can be used to query the history best, resume the search,
#   and do more analyses later.
# * see :any:`auto_scheduler.TuningOptions` for more parameters
# * Here, we need to create a :code:`auto_scheduler.SketchPolicy` object, and add the custom sketch
#   rule as a `init_search_callbacks`.

log_file = "sparse_dense.json"
tune_option = auto_scheduler.TuningOptions(
    num_measure_trials=10,
    measure_callbacks=[auto_scheduler.RecordToFile(log_file)],
    verbose=2,
)

search_policy = auto_scheduler.SketchPolicy(
    task,
    program_cost_model=auto_scheduler.XGBModel(),
    init_search_callbacks=[
        auto_scheduler.PreloadCustomSketchRule(meet_condition_func, apply_func,
                                               "SparseDense")
    ],
)

######################################################################
# Run the search
# ^^^^^^^^^^^^^^
# Now we get all inputs ready.
# We can kick off the search and let the auto-scheduler do its magic.
# After some measurement trials, we can load the best schedule from the log
# file and apply it.

# Run auto-tuning (search)
# learning the behavior of the auto-scheduler.
print("Equivalent python schedule:")
print(task.compute_dag.print_python_code_from_state(inp.state))

# Rebuild the binary. This shows how you can apply the best schedule from a
# log file without reruning the search again.
sch, args = task.compute_dag.apply_steps_from_state(inp.state)
func = tvm.build(sch, args, target)

######################################################################
# A more complicated example is to resume the search.
# In this case, we need to create the search policy and cost model by ourselves
# and resume the status of search policy and cost model with the log file.
# In the example below we resume the status and do more 5 trials.

cost_model = auto_scheduler.XGBModel()
cost_model.update_from_file(log_file)
search_policy = auto_scheduler.SketchPolicy(
    task, cost_model, init_search_callbacks=[auto_scheduler.PreloadMeasuredStates(log_file)]
)
measure_ctx = auto_scheduler.LocalRPCMeasureContext(min_repeat_ms=300)
tune_option = auto_scheduler.TuningOptions(
    num_measure_trials=5,
    runner=measure_ctx.runner,
    measure_callbacks=[auto_scheduler.RecordToFile(log_file)],
)
sch, args = auto_scheduler.auto_schedule(task, search_policy, tuning_options=tune_option)

# Kill the measurement process
del measure_ctx
示例#13
0
def test_sketch_search_policy_cuda_xgbmodel_rpc_runner():
    measure_ctx = auto_scheduler.LocalRPCMeasureContext()
    search_common(target="cuda",
                  runner=measure_ctx.runner,
                  cost_model=auto_scheduler.XGBModel())
示例#14
0
def test_sketch_search_policy_xgbmodel():
    search_common(cost_model=auto_scheduler.XGBModel())