示例#1
0
def test_meta_schedule_local_runner_time_out():
    """Test meta schedule Local Runner time out"""
    mod = MatmulModule
    builder = LocalBuilder()
    (builder_result,) = builder.build([BuilderInput(mod, Target("llvm"))])
    assert builder_result.artifact_path is not None
    assert builder_result.error_msg is None

    runner_input = RunnerInput(
        builder_result.artifact_path,
        "llvm",
        [
            TensorInfo("float32", (MATMUL_N, MATMUL_N)),
            TensorInfo("float32", (MATMUL_N, MATMUL_N)),
            TensorInfo("float32", (MATMUL_N, MATMUL_N)),
        ],
    )

    def initializer():
        @register_func("meta_schedule.runner.test_time_out")
        def timeout_session_creator(  # pylint: disable=unused-variable
            device: Device,  # pylint: disable=unused-argument
            args_info: T_ARG_INFO_JSON_OBJ_LIST,  # pylint: disable=unused-argument
            alloc_repeat: int,  # pylint: disable=unused-argument
        ) -> RPCSession:
            time.sleep(2)

    evaluator_config = EvaluatorConfig(
        number=1,
        repeat=1,
        min_repeat_ms=0,
        enable_cpu_cache_flush=False,
    )

    runner = LocalRunner(
        timeout_sec=1,
        evaluator_config=evaluator_config,
        initializer=initializer,
        f_alloc_argument="meta_schedule.runner.test_time_out",
    )

    # Run the module
    (runner_future,) = runner.run([runner_input])
    runner_result = runner_future.result()

    assert runner_result.error_msg is not None and runner_result.error_msg.startswith(
        "LocalRunner: Timeout, killed after"
    )
    assert runner_result.run_secs is None
    _clean_build(builder_result.artifact_path)
def verify_meta_schedule_with_tensorrt(
    mod,
    params,
    data_shape,
    use_trt: bool = True,
):
    # Build
    builder = LocalBuilder(
        f_build=build_relay_with_tensorrt if use_trt else build_relay,
        timeout_sec=1000,
    )
    builder_input = BuilderInput(mod, Target("cuda"), params)
    builder_result = builder.build([builder_input])[0]
    assert builder_result.error_msg is None, builder_result.error_msg
    assert builder_result.artifact_path is not None

    # Run
    runner_input = RunnerInput(
        builder_result.artifact_path,
        device_type="cuda",
        args_info=[TensorInfo("float32", data_shape)],
    )
    runner = LocalRunner(
        evaluator_config=EvaluatorConfig(
            number=5,
            repeat=2,
            min_repeat_ms=0,
            enable_cpu_cache_flush=False,
        ),
        f_run_evaluator=run_with_graph_executor,
    )

    # Run the module
    runner_future = runner.run([runner_input])[0]
    runner_result = runner_future.result()
    assert runner_result is not None
    assert runner_result.error_msg is None, runner_result.error_msg
    assert runner_result.run_secs is not None

    for result in runner_result.run_secs:
        if isinstance(result, FloatImm):
            result = result.value
        assert isinstance(result, float)
        assert result >= 0.0
def test_meta_schedule_local_single_run():
    """Test meta schedule local runner for a single run"""
    # Build the module
    mod = MatmulModule
    builder = LocalBuilder()
    (builder_result, ) = builder.build([BuilderInput(mod, Target("llvm"))])
    assert builder_result.artifact_path is not None
    assert builder_result.error_msg is None

    runner_input = RunnerInput(
        builder_result.artifact_path,
        "llvm",
        [
            TensorInfo("float32", (MATMUL_N, MATMUL_N)),
            TensorInfo("float32", (MATMUL_N, MATMUL_N)),
            TensorInfo("float32", (MATMUL_N, MATMUL_N)),
        ],
    )

    evaluator_config = EvaluatorConfig(
        number=1,
        repeat=1,
        min_repeat_ms=0,
        enable_cpu_cache_flush=False,
    )
    runner = LocalRunner(timeout_sec=100, evaluator_config=evaluator_config)
    # Run the module
    (runner_future, ) = runner.run([runner_input])
    runner_result = runner_future.result()
    assert runner_result.error_msg is None
    for result in runner_result.run_secs:
        if isinstance(result, FloatImm):
            result = result.value
        assert isinstance(result, float)
        assert result >= 0.0
    _clean_build(builder_result.artifact_path)
示例#4
0
def test_meta_schedule_evolutionary_search(
):  # pylint: disable = invalid-name]
    num_trials_per_iter = 10
    num_trials_total = 100

    strategy = EvolutionarySearch(
        num_trials_per_iter=num_trials_per_iter,
        num_trials_total=num_trials_total,
        population_size=5,
        init_measured_ratio=0.1,
        init_min_unmeasured=50,
        genetic_num_iters=3,
        genetic_mutate_prob=0.5,
        genetic_max_fail_count=10,
        eps_greedy=0.9,
    )
    context = TuneContext(
        mod=Matmul,
        space_generator=ScheduleFn(sch_fn=_schedule_matmul),
        mutator_probs={
            DummyMutator(): 1.0,
        },
        target=tvm.target.Target("llvm"),
        num_threads=1,  # because we are using a mutator from the python side
    )
    _scheduler = RoundRobin(
        tasks=[context],
        builder=LocalBuilder(),
        runner=LocalRunner(),
        database=DummyDatabase(),
        cost_model=RandomModel(),
        measure_callbacks=[],
    )
    context.space_generator.initialize_with_tune_context(context)
    spaces = context.space_generator.generate_design_space(context.mod)

    strategy.initialize_with_tune_context(context)
    strategy.pre_tuning(spaces)
    (correct_sch, ) = ScheduleFn(
        sch_fn=_schedule_matmul).generate_design_space(Matmul)
    num_trials_each_iter: List[int] = []
    candidates = strategy.generate_measure_candidates()
    while candidates is not None:
        num_trials_each_iter.append(len(candidates))
        runner_results: List[RunnerResult] = []
        for candidate in candidates:
            _is_trace_equal(
                candidate.sch,
                correct_sch,
                remove_decisions=(isinstance(strategy, ReplayTrace)),
            )
            runner_results.append(
                RunnerResult(run_secs=[0.11, 0.41, 0.54], error_msg=None))
        strategy.notify_runner_results(context, candidates, runner_results)
        candidates = strategy.generate_measure_candidates()
    strategy.post_tuning()
    print(num_trials_each_iter)
    correct_count = 10  # For each iteration except the last one
    assert num_trials_each_iter == [correct_count] * (
        num_trials_total // correct_count) + (
            [num_trials_total %
             correct_count] if num_trials_total % correct_count != 0 else [])
    del _scheduler
示例#5
0
def test_meta_schedule_evolutionary_search(
):  # pylint: disable = invalid-name]
    @derived_object
    class DummyMutator(PyMutator):
        """Dummy Mutator for testing"""
        def initialize_with_tune_context(self, context: "TuneContext") -> None:
            pass

        def apply(self, trace: Trace, _) -> Optional[Trace]:
            return Trace(trace.insts, {})

    @derived_object
    class DummyDatabase(PyDatabase):
        """Dummy Database for testing"""
        def __init__(self):
            super().__init__()
            self.records = []
            self.workload_reg = []

        def has_workload(self, mod: IRModule) -> bool:
            for workload in self.workload_reg:
                if tvm.ir.structural_equal(workload.mod, mod):
                    return True
            return False

        def commit_tuning_record(self, record: TuningRecord) -> None:
            self.records.append(record)

        def commit_workload(self, mod: IRModule) -> Workload:
            for workload in self.workload_reg:
                if tvm.ir.structural_equal(workload.mod, mod):
                    return workload
            workload = Workload(mod)
            self.workload_reg.append(workload)
            return workload

        def get_top_k(self, workload: Workload,
                      top_k: int) -> List[TuningRecord]:
            return list(
                filter(
                    lambda x: x.workload == workload,
                    sorted(self.records,
                           key=lambda x: sum(x.run_secs) / len(x.run_secs)),
                ))[:int(top_k)]

        def __len__(self) -> int:
            return len(self.records)

        def print_results(self) -> None:
            print("\n".join([str(r) for r in self.records]))

    num_trials_per_iter = 10
    num_trials_total = 100

    strategy = EvolutionarySearch(
        num_trials_per_iter=num_trials_per_iter,
        num_trials_total=num_trials_total,
        population_size=5,
        init_measured_ratio=0.1,
        init_min_unmeasured=50,
        genetic_num_iters=3,
        genetic_mutate_prob=0.5,
        genetic_max_fail_count=10,
        eps_greedy=0.9,
    )
    context = TuneContext(
        mod=Matmul,
        space_generator=ScheduleFn(sch_fn=_schedule_matmul),
        mutator_probs={
            DummyMutator(): 1.0,
        },
        target=tvm.target.Target("llvm"),
        num_threads=1,  # because we are using a mutator from the python side
    )
    _scheduler = RoundRobin(
        tasks=[context],
        builder=LocalBuilder(),
        runner=LocalRunner(),
        database=DummyDatabase(),
        cost_model=RandomModel(),
        measure_callbacks=[],
    )
    context.space_generator.initialize_with_tune_context(context)
    spaces = context.space_generator.generate_design_space(context.mod)

    strategy.initialize_with_tune_context(context)
    strategy.pre_tuning(spaces)
    (correct_sch, ) = ScheduleFn(
        sch_fn=_schedule_matmul).generate_design_space(Matmul)
    num_trials_each_iter: List[int] = []
    candidates = strategy.generate_measure_candidates()
    while candidates is not None:
        num_trials_each_iter.append(len(candidates))
        runner_results: List[RunnerResult] = []
        for candidate in candidates:
            _is_trace_equal(
                candidate.sch,
                correct_sch,
                remove_decisions=(isinstance(strategy, ReplayTrace)),
            )
            runner_results.append(
                RunnerResult(run_secs=[0.11, 0.41, 0.54], error_msg=None))
        strategy.notify_runner_results(context, candidates, runner_results)
        candidates = strategy.generate_measure_candidates()
    strategy.post_tuning()
    print(num_trials_each_iter)
    correct_count = 10  # For each iteration except the last one
    assert num_trials_each_iter == [correct_count] * (
        num_trials_total // correct_count) + (
            [num_trials_total %
             correct_count] if num_trials_total % correct_count != 0 else [])
    del _scheduler
def test_meta_schedule_local_runner_add_test():
    """Test meta schedule local runner with add module"""
    def _check_correct_add(args_before: List[np.array],
                           args_after: List[np.array]) -> None:
        a_before, b_before, c_before = args_before
        a_after, b_after, c_after = args_after
        c_before = a_before + b_before
        assert (a_before == a_after).all()
        assert (b_before == b_after).all()
        assert (c_before == c_after).all()

    def test_alloc_argument(
        device: Device,
        args_info: T_ARG_INFO_JSON_OBJ_LIST,  # pylint: disable=unused-argument
        alloc_repeat: int,
    ) -> List[T_ARGUMENT_LIST]:
        global repeated_args_before  # pylint: disable=global-variable-undefined, invalid-name
        repeated_args_before = []
        repeated_args = local_default_alloc_argument(device, args_info,
                                                     alloc_repeat)
        for args in repeated_args:
            repeated_args_before.append([arg.asnumpy() for arg in args])
        return repeated_args

    def test_run_evaluator(
        rt_mod: Module,
        device: Device,
        evaluator_config: EvaluatorConfig,
        repeated_args: List[Any],
    ) -> List[float]:
        global repeated_args_before  # pylint: disable=global-variable-undefined, invalid-name
        repeated_args_after = []
        evaluator = rt_mod.time_evaluator(
            func_name=rt_mod.entry_name,
            dev=device,
            number=evaluator_config.number,
            repeat=evaluator_config.repeat,
            min_repeat_ms=evaluator_config.min_repeat_ms,
            f_preproc="cache_flush_cpu_non_first_arg"
            if evaluator_config.enable_cpu_cache_flush else "",
        )
        repeated_costs: List[List[float]] = []
        for args in repeated_args:
            device.sync()
            profile_result = evaluator(*args)
            repeated_costs.append(profile_result.results)
            repeated_args_after.append([arg.asnumpy() for arg in args])
        costs = [
            float(cost)
            for cost in itertools.chain.from_iterable(repeated_costs)
        ]
        for args_before, args_after in zip(repeated_args_before,
                                           repeated_args_after):
            _check_correct_add(args_before, args_after)
        del repeated_args_before
        return costs

    # Build the module
    mod = AddModule
    builder = LocalBuilder()
    (builder_result, ) = builder.build([BuilderInput(mod, Target("llvm"))])
    assert builder_result.artifact_path is not None
    assert builder_result.error_msg is None

    runner_input = RunnerInput(
        builder_result.artifact_path,
        "llvm",
        [
            TensorInfo("float32", [MATMUL_M]),
            TensorInfo("float32", [MATMUL_M]),
            TensorInfo("float32", [MATMUL_M]),
        ],
    )

    evaluator_config = EvaluatorConfig(
        number=1,
        repeat=1,
        min_repeat_ms=0,
        enable_cpu_cache_flush=False,
    )
    runner = LocalRunner(
        timeout_sec=100,
        evaluator_config=evaluator_config,
        f_alloc_argument=test_alloc_argument,
        f_run_evaluator=test_run_evaluator,
    )
    # Run the module
    (runner_future, ) = runner.run([runner_input])
    runner_result = runner_future.result()
    assert runner_result.error_msg is None
    for result in runner_result.run_secs:
        if isinstance(result, FloatImm):
            result = result.value
        assert isinstance(result, float)
        assert result >= 0.0
    _clean_build(builder_result.artifact_path)
def test_meta_schedule_local_multiple_runs():
    """Test meta schedule local runner for multiple runs"""
    # Build the module
    mods = [
        MatmulModule,
        MatmulReluModule,
        BatchMatmulModule,
    ]
    builder = LocalBuilder()
    builder_inputs = [BuilderInput(mod, Target("llvm")) for mod in mods]
    builder_results = builder.build(builder_inputs)
    for builder_result in builder_results:
        assert builder_result.artifact_path is not None
        assert builder_result.error_msg is None

    args_infos = [
        [
            TensorInfo("float32", (MATMUL_N, MATMUL_N)),
            TensorInfo("float32", (MATMUL_N, MATMUL_N)),
            TensorInfo("float32", (MATMUL_N, MATMUL_N)),
        ],
        [
            TensorInfo("float32", (MATMUL_N, MATMUL_N)),
            TensorInfo("float32", (MATMUL_N, MATMUL_N)),
            TensorInfo("float32", (MATMUL_N, MATMUL_N)),
        ],
        [
            TensorInfo("float32", [16, MATMUL_M, MATMUL_M]),
            TensorInfo("float32", [16, MATMUL_M, MATMUL_M]),
            TensorInfo("float32", [16, MATMUL_M, MATMUL_M]),
        ],
    ]

    runner_inputs = [
        RunnerInput(builder_results[i].artifact_path, "llvm", args_infos[i])
        for i in range(len(mods))
    ]

    evaluator_config = EvaluatorConfig(
        number=1,
        repeat=1,
        min_repeat_ms=0,
        enable_cpu_cache_flush=False,
    )

    runner = LocalRunner(timeout_sec=100, evaluator_config=evaluator_config)

    # Run the module
    runner_futures = runner.run(runner_inputs)
    runner_results = [
        runner_future.result() for runner_future in runner_futures
    ]

    for runner_result in runner_results:
        assert runner_result.error_msg is None
        for result in runner_result.run_secs:
            if isinstance(result, FloatImm):
                result = result.value
            assert isinstance(result, float)
            assert result >= 0.0

    for builder_result in builder_results:
        _clean_build(builder_result.artifact_path)
示例#8
0
def verify_meta_schedule_with_tensorrt(
    mod, params, data_shape, use_meta_sched: bool = True, use_trt: bool = True, mode: str = "vm"
):
    if use_meta_sched:
        # With meta_schedule
        dev = "cuda"

        # Build
        if use_trt:
            from tvm.meta_schedule.testing import relay_build_with_tensorrt

            builder = LocalBuilder(f_build=relay_build_with_tensorrt)
        else:

            def relay_build_without_tensorrt(
                mod: Module,
                target: Target,
                params: dict,
            ) -> List[BuilderResult]:
                return tvm.relay.build_module._build_module_no_factory(mod, "cuda", "llvm", params)

            builder = LocalBuilder(f_build=relay_build_without_tensorrt)

        builder_input = BuilderInput(mod, Target(dev, host="llvm"), params)

        (builder_result,) = builder.build([builder_input])
        assert builder_result.error_msg is None
        assert builder_result.artifact_path is not None

        # Run
        evaluator_config = EvaluatorConfig(
            number=5,
            repeat=2,
            min_repeat_ms=0,
            enable_cpu_cache_flush=False,
        )

        runner_input = RunnerInput(
            builder_result.artifact_path, "cuda", [TensorInfo("float32", data_shape)]
        )

        def eval_func(rt_mod, device, evaluator_config, repeated_args):
            rt_mod = tvm.contrib.graph_executor.GraphModule(rt_mod["default"](device))

            eval = rt_mod.module.time_evaluator(
                func_name="run",
                dev=device,
                number=evaluator_config.number,
                repeat=evaluator_config.repeat,
                min_repeat_ms=evaluator_config.min_repeat_ms,
                f_preproc="cache_flush_cpu_non_first_arg"
                if evaluator_config.enable_cpu_cache_flush
                else "",
            )
            repeated_costs: List[List[float]] = []
            for args in repeated_args:
                profile_result = eval(*args)
                repeated_costs.append(profile_result.results)

            costs = [float(cost) for cost in itertools.chain.from_iterable(repeated_costs)]
            return costs

        runner = LocalRunner(
            evaluator_config=evaluator_config,
            f_run_evaluator=eval_func,
        )

        # Run the module
        (runner_future,) = runner.run([runner_input])
        runner_result = runner_future.result()
        assert runner_result is not None
        assert runner_result.run_secs is not None
        assert runner_result.error_msg is None

        for result in runner_result.run_secs:
            if isinstance(result, FloatImm):
                result = result.value
            assert isinstance(result, float)
            assert result >= 0.0

    else:
        # Without meta_schedule
        if use_trt:
            mod, config = tensorrt.partition_for_tensorrt(mod)
            with tvm.transform.PassContext(
                opt_level=3, config={"relay.ext.tensorrt.options": config}
            ):
                func = relay.create_executor(
                    mode, mod=mod, device=tvm.cuda(0), target="cuda"
                ).evaluate()
        else:
            with tvm.transform.PassContext(opt_level=3):
                func = relay.create_executor(
                    mode, mod=mod, device=tvm.cuda(0), target="cuda", params=params
                ).evaluate()