示例#1
0
def test_meta_schedule_task_scheduler_single():
    num_trials_per_iter = 3
    max_trials_per_task = 10
    sch_fn = ScheduleFn(sch_fn=_schedule_matmul)
    replay = ReplayTrace(num_trials_per_iter, max_trials_per_task)
    task = TuneContext(
        MatmulModule,
        target=tvm.target.Target("llvm"),
        space_generator=sch_fn,
        search_strategy=replay,
        task_name="Test",
        rand_state=42,
    )
    database = DummyDatabase()
    round_robin = RoundRobin(
        [task],
        [1.0],
        DummyBuilder(),
        DummyRunner(),
        database,
        measure_callbacks=[measure_callback.AddToDatabase()],
        max_trials=max_trials_per_task,
    )
    round_robin.tune()
    assert len(database) == max_trials_per_task
示例#2
0
def test_meta_schedule_task_scheduler_multiple():
    num_trials_per_iter = 6
    max_trials_per_task = 101
    tasks = [
        TuneContext(
            MatmulModule,
            target=tvm.target.Target("llvm"),
            space_generator=ScheduleFn(sch_fn=_schedule_matmul),
            search_strategy=ReplayTrace(num_trials_per_iter,
                                        max_trials_per_task),
            task_name="Matmul",
            rand_state=42,
        ),
        TuneContext(
            MatmulReluModule,
            target=tvm.target.Target("llvm"),
            space_generator=ScheduleFn(sch_fn=_schedule_matmul),
            search_strategy=ReplayTrace(num_trials_per_iter,
                                        max_trials_per_task),
            task_name="MatmulRelu",
            rand_state=0xDEADBEEF,
        ),
        TuneContext(
            BatchMatmulModule,
            target=tvm.target.Target("llvm"),
            space_generator=ScheduleFn(sch_fn=_schedule_batch_matmul),
            search_strategy=ReplayTrace(num_trials_per_iter,
                                        max_trials_per_task),
            task_name="BatchMatmul",
            rand_state=0x114514,
        ),
    ]
    database = DummyDatabase()
    round_robin = RoundRobin(
        tasks,
        [1.0],
        DummyBuilder(),
        DummyRunner(),
        database,
        measure_callbacks=[measure_callback.AddToDatabase()],
        max_trials=max_trials_per_task * len(tasks),
    )
    round_robin.tune()
    assert len(database) == max_trials_per_task * len(tasks)
    for task in tasks:
        assert (len(
            database.get_top_k(
                database.commit_workload(task.mod),
                100000,
            )) == max_trials_per_task)
示例#3
0
def test_meta_schedule_task_scheduler_single():
    num_trials_per_iter = 3
    num_trials_total = 10
    sch_fn = ScheduleFn(sch_fn=_schedule_matmul)
    replay = ReplayTrace(num_trials_per_iter, num_trials_total)
    task = TuneContext(
        MatmulModule,
        target=tvm.target.Target("llvm"),
        space_generator=sch_fn,
        search_strategy=replay,
        task_name="Test",
        rand_state=42,
    )
    database = DummyDatabase()
    round_robin = RoundRobin([task], DummyBuilder(), DummyRunner(), database)
    round_robin.tune()
    assert len(database) == num_trials_total
示例#4
0
def test_meta_schedule_task_scheduler_multiple():
    num_trials_per_iter = 6
    num_trials_total = 101
    tasks = [
        TuneContext(
            MatmulModule,
            target=tvm.target.Target("llvm"),
            space_generator=ScheduleFn(sch_fn=_schedule_matmul),
            search_strategy=ReplayTrace(num_trials_per_iter, num_trials_total),
            task_name="Matmul",
            rand_state=42,
        ),
        TuneContext(
            MatmulReluModule,
            target=tvm.target.Target("llvm"),
            space_generator=ScheduleFn(sch_fn=_schedule_matmul),
            search_strategy=ReplayTrace(num_trials_per_iter, num_trials_total),
            task_name="MatmulRelu",
            rand_state=0xDEADBEEF,
        ),
        TuneContext(
            BatchMatmulModule,
            target=tvm.target.Target("llvm"),
            space_generator=ScheduleFn(sch_fn=_schedule_batch_matmul),
            search_strategy=ReplayTrace(num_trials_per_iter, num_trials_total),
            task_name="BatchMatmul",
            rand_state=0x114514,
        ),
    ]
    database = DummyDatabase()
    round_robin = RoundRobin(tasks, DummyBuilder(), DummyRunner(), database)
    round_robin.tune()
    assert len(database) == num_trials_total * len(tasks)
    print(database.workload_reg)
    for task in tasks:
        assert len(database.get_top_k(database.commit_workload(task.mod),
                                      1e9)) == num_trials_total