示例#1
0
def main():
    describe()
    print(f"Workload: {ARGS.workload}")

    mod, params, (input_name, input_shape, input_dtype) = get_network(
        ARGS.workload,
        ARGS.input_shape,
        cache_dir=ARGS.cache_dir,
    )
    input_info = {input_name: input_shape}
    input_data = {
        item["name"]: generate_input_data(item["shape"], item["dtype"])
        for item in ARGS.input_shape
    }
    for input_name, input_shape in input_info.items():
        print(f"  input_name : {input_name}")
        print(f"  input_shape: {input_shape}")
        print(f"  input_dtype: {input_dtype}")

    runner = ms.runner.RPCRunner(
        rpc_config=ARGS.rpc_config,
        evaluator_config=ms.runner.EvaluatorConfig(
            number=ARGS.number,
            repeat=ARGS.repeat,
            min_repeat_ms=ARGS.min_repeat_ms,
            enable_cpu_cache_flush=ARGS.cpu_flush,
        ),
        alloc_repeat=1,
    )

    with ms.Profiler() as profiler:
        lib = ms.tune_relay(
            mod=mod,
            target=ARGS.target,
            config=ms.TuneConfig(
                strategy="evolutionary",
                num_trials_per_iter=64,
                max_trials_per_task=ARGS.num_trials,
                max_trials_global=ARGS.num_trials,
                adaptive_training=ARGS.adaptive_training,
            ),
            runner=runner,  # type: ignore
            work_dir=ARGS.work_dir,
            params=params,
            backend=ARGS.backend,
        )

    print("Tuning Time:")
    print(profiler.table())

    run_module_via_rpc(
        rpc_config=ARGS.rpc_config,
        lib=lib,
        dev_type=ARGS.target.kind.name,
        args=input_data,
        continuation=create_timer(ARGS.backend),
        backend=ARGS.backend,
    )
示例#2
0
def test_cuda_tensor_core(model_name, input_shape):
    """Integration tests of auto tensorization with CUDA tensor core"""
    target = tvm.target.Target("nvidia/geforce-rtx-3070")
    dev = tvm.cuda()
    if model_name.startswith("bert"):
        data = tvm.nd.array(np.random.randint(0, 30521, size=input_shape), dev)  # embedding size
    else:
        data = tvm.nd.array(np.random.randn(*input_shape).astype("float32"), dev)

    mod, params, (input_name, _, _) = relay_workload.get_network(model_name, input_shape)
    seq = tvm.transform.Sequential(
        [
            relay.transform.ToMixedPrecision(),
        ]
    )

    with tvm.transform.PassContext(opt_level=3):
        mod = seq(mod)

    def convert_layout(mod):
        seq = tvm.transform.Sequential(
            [relay.transform.ConvertLayout({"nn.conv2d": ["NHWC", "OHWI"]})]
        )
        with tvm.transform.PassContext(opt_level=3):
            mod = seq(mod)
        return mod

    with tempfile.TemporaryDirectory() as work_dir:
        with ms.Profiler() as profiler:
            rt_mod1: tvm.runtime.Module = ms.tune_relay(
                mod=convert_layout(mod),
                params=params,
                target=target,
                config=ms.TuneConfig(
                    num_trials_per_iter=32,
                    max_trials_per_task=200,
                    max_trials_global=3000,
                ),
                sch_rules=ms.default_config._DefaultCUDATensorCore.schedule_rules,
                postprocs=ms.default_config._DefaultCUDATensorCore.postprocs,
                work_dir=work_dir,
            )
        print(profiler.table())

        # Compile without MetaSchedule for correctness check
        with tvm.transform.PassContext(opt_level=0):
            rt_mod2 = relay.build(mod, target=target, params=params)

        def get_output(data, lib):
            module = tvm.contrib.graph_executor.GraphModule(lib["default"](dev))
            module.set_input(input_name, data)
            module.run()
            return module.get_output(0).numpy()

        # Check correctness
        actual_output = get_output(data, rt_mod1)
        expected_output = get_output(data, rt_mod2)
        assert np.allclose(actual_output, expected_output, rtol=1e-2, atol=2e-2)
示例#3
0
def main():
    describe()
    print(f"Workload: {ARGS.model_name}")

    onnx_model = onnx.load(ARGS.onnx_path)
    shape_dict = {}
    for item in ARGS.input_shape:
        print(f"  input_name : {item['name']}")
        print(f"  input_shape: {item['shape']}")
        print(f"  input_dtype: {item['dtype']}")
        shape_dict[item["name"]] = item["shape"]
    mod, params = from_onnx(onnx_model, shape_dict, freeze_params=True)
    input_data = {
        item["name"]: generate_input_data(item["shape"], item["dtype"]) for item in ARGS.input_shape
    }

    runner = ms.runner.RPCRunner(
        rpc_config=ARGS.rpc_config,
        evaluator_config=ms.runner.EvaluatorConfig(
            number=ARGS.number,
            repeat=ARGS.repeat,
            min_repeat_ms=ARGS.min_repeat_ms,
            enable_cpu_cache_flush=ARGS.cpu_flush,
        ),
        alloc_repeat=1,
    )

    with ms.Profiler() as profiler:
        lib = ms.tune_relay(
            mod=mod,
            target=ARGS.target,
            config=ms.TuneConfig(
                strategy="evolutionary",
                num_trials_per_iter=64,
                max_trials_per_task=ARGS.num_trials,
                max_trials_global=ARGS.num_trials,
                adaptive_training=ARGS.adaptive_training,
            ),
            runner=runner,  # type: ignore
            work_dir=ARGS.work_dir,
            params=params,
            backend=ARGS.backend,
        )
    print("Tuning Time:")
    print(profiler.table())

    run_module_via_rpc(
        rpc_config=ARGS.rpc_config,
        lib=lib,
        dev_type=ARGS.target.kind.name,
        args=input_data,
        continuation=create_timer(ARGS.backend),
        backend=ARGS.backend,
    )
示例#4
0
def test_meta_schedule_tune_relay(
    model_name: str,
    input_shape: List[int],
    target: str,
):
    dev = tvm.cpu() if str(target).startswith("llvm") else tvm.cuda()
    if model_name.startswith("bert"):
        data = tvm.nd.array(np.random.randint(0, 30521, size=input_shape),
                            dev)  # embedding size
    else:
        data = tvm.nd.array(
            np.random.randn(*input_shape).astype("float32"), dev)

    mod, params, (input_name, _, _) = get_network(name=model_name,
                                                  input_shape=input_shape)
    target = Target(target)
    with tempfile.TemporaryDirectory() as work_dir:
        with ms.Profiler() as profiler:
            rt_mod1: tvm.runtime.Module = ms.tune_relay(
                mod=mod,
                params=params,
                target=target,
                config=ms.TuneConfig(
                    strategy="evolutionary",
                    num_trials_per_iter=32,
                    max_trials_per_task=20000,
                    max_trials_global=20000,
                ),
                work_dir=work_dir,
            )
        print(profiler.table())
        # Compile without meta-schedule for correctness check
        with tvm.transform.PassContext(opt_level=0):
            rt_mod2 = relay.build(mod, target=target, params=params)

        def get_output(data, lib):
            module = graph_executor.GraphModule(lib["default"](dev))
            module.set_input(input_name, data)
            module.run()
            return module.get_output(0).numpy()

        # Check correctness
        actual_output = get_output(data, rt_mod1)
        expected_output = get_output(data, rt_mod2)
        assert np.allclose(actual_output,
                           expected_output,
                           rtol=1e-4,
                           atol=2e-4)
def main():
    mod, params, (input_name, input_shape, input_dtype) = get_network(
        ARGS.workload,
        ARGS.input_shape,
        cache_dir=ARGS.cache_dir,
    )
    print(f"Workload: {ARGS.workload}")
    print(f"  input_name: {input_name}")
    print(f"  input_shape: {input_shape}")
    print(f"  input_dtype: {input_dtype}")
    alloc_repeat = 1
    runner = ms.runner.RPCRunner(
        rpc_config=ARGS.rpc_config,
        evaluator_config=ms.runner.EvaluatorConfig(
            number=3,
            repeat=1,
            min_repeat_ms=100,
            enable_cpu_cache_flush=False,
        ),
        alloc_repeat=alloc_repeat,
        max_workers=ARGS.rpc_workers,
    )
    lib = ms.tune_relay(
        mod=mod,
        target=ARGS.target,
        config=ms.TuneConfig(
            strategy="evolutionary",
            num_trials_per_iter=64,
            max_trials_per_task=ARGS.num_trials,
            max_trials_global=ARGS.num_trials,
        ),
        runner=runner,  # type: ignore
        work_dir=ARGS.work_dir,
        params=params,
    )
    graph, rt_mod, params = lib.graph_json, lib.lib, lib.params
    if input_dtype.startswith("float"):
        input_data = np.random.uniform(size=input_shape).astype(input_dtype)
    else:
        input_data = np.random.randint(low=0, high=10000, size=input_shape, dtype=input_dtype)

    def f_timer(rt_mod, dev, input_data):
        # pylint: disable=import-outside-toplevel
        from tvm.contrib.graph_executor import GraphModule

        # pylint: enable=import-outside-toplevel

        mod = GraphModule(rt_mod["default"](dev))
        mod.set_input(input_name, input_data)
        ftimer = mod.module.time_evaluator(
            "run",
            dev,
            min_repeat_ms=500,
            repeat=3,
        )
        results = list(np.array(ftimer().results) * 1000.0)  # type: ignore
        print("Running time in time_evaluator: ", results)

    run_module_via_rpc(
        rpc_config=ARGS.rpc_config,
        lib=lib,
        dev_type=ARGS.target.kind.name,
        args=[input_data],
        continuation=f_timer,
    )

    def f_per_layer(rt_mod, dev, input_data):
        # pylint: disable=import-outside-toplevel
        from tvm.contrib.debugger.debug_executor import create

        # pylint: enable=import-outside-toplevel
        mod = create(graph, rt_mod, dev)
        mod.set_input(input_name, input_data)
        graph_nodes = [n["name"] for n in json.loads(graph)["nodes"]]
        graph_time = mod.run_individual(number=10, repeat=1, min_repeat_ms=5000)
        print("|graph_nodes| = ", len(graph_nodes))
        print("|graph_time| = ", len(graph_time))
        graph_nodes_time = {k: float(v) for k, v in zip(graph_nodes, graph_time)}
        for k, v in graph_nodes_time.items():
            print(f"{k} : {v:.3f}")

    run_module_via_rpc(
        rpc_config=ARGS.rpc_config,
        lib=rt_mod,
        dev_type=ARGS.target.kind.name,
        args=[input_data],
        continuation=f_per_layer,
    )
示例#6
0
def main():
    describe()
    print(f"Workload: {ARGS.model_name}")
    onnx_model = onnx.load(ARGS.onnx_path)
    shape_dict = {}
    for item in ARGS.input_shape:
        print(f"  input_name: {item['name']}")
        print(f"  input_shape: {item['shape']}")
        print(f"  input_dtype: {item['dtype']}")
        shape_dict[item["name"]] = item["shape"]
    mod, params = from_onnx(onnx_model, shape_dict, freeze_params=True)
    runner = ms.runner.RPCRunner(
        rpc_config=ARGS.rpc_config,
        evaluator_config=ms.runner.EvaluatorConfig(
            number=ARGS.number,
            repeat=ARGS.repeat,
            min_repeat_ms=ARGS.min_repeat_ms,
            enable_cpu_cache_flush=ARGS.cpu_flush,
        ),
        alloc_repeat=1,
    )
    with ms.Profiler() as profiler:
        lib = ms.tune_relay(
            mod=mod,
            target=ARGS.target,
            config=ms.TuneConfig(
                strategy="evolutionary",
                num_trials_per_iter=64,
                max_trials_per_task=ARGS.num_trials,
                max_trials_global=ARGS.num_trials,
            ),
            runner=runner,  # type: ignore
            work_dir=ARGS.work_dir,
            params=params,
        )
    print("Tuning Time:")
    print(profiler.table())
    graph, rt_mod, params = lib.graph_json, lib.lib, lib.params
    input_data = {}
    for item in ARGS.input_shape:
        input_name, input_shape, input_dtype = item["name"], item[
            "shape"], item["dtype"]
        if input_dtype.startswith("float"):
            input_data[input_name] = np.random.uniform(
                size=input_shape).astype(input_dtype)
        else:
            input_data[input_name] = np.random.randint(low=0,
                                                       high=10000,
                                                       size=input_shape,
                                                       dtype=input_dtype)

    def f_timer(rt_mod, dev, input_data):
        # pylint: disable=import-outside-toplevel
        from tvm.contrib.graph_executor import GraphModule

        # pylint: enable=import-outside-toplevel

        mod = GraphModule(rt_mod["default"](dev))
        for input_name, input_value in input_data.items():
            mod.set_input(input_name, input_value)
        ftimer = mod.module.time_evaluator(
            "run",
            dev,
            min_repeat_ms=500,
            repeat=3,
        )
        results = list(np.array(ftimer().results) * 1000.0)  # type: ignore
        print("Running time in time_evaluator: ", results)

    run_module_via_rpc(
        rpc_config=ARGS.rpc_config,
        lib=lib,
        dev_type=ARGS.target.kind.name,
        args=input_data,
        continuation=f_timer,
    )

    def f_per_layer(rt_mod, dev, input_data):
        # pylint: disable=import-outside-toplevel
        from tvm.contrib.debugger.debug_executor import create

        # pylint: enable=import-outside-toplevel
        mod = create(graph, rt_mod, dev)
        for input_name, input_value in input_data.items():
            mod.set_input(input_name, input_value)
        graph_nodes = [n["name"] for n in json.loads(graph)["nodes"]]
        graph_time = mod.run_individual(number=10,
                                        repeat=1,
                                        min_repeat_ms=5000)
        print("|graph_nodes| = ", len(graph_nodes))
        print("|graph_time| = ", len(graph_time))
        graph_nodes_time = {
            k: float(v)
            for k, v in zip(graph_nodes, graph_time)
        }
        for k, v in graph_nodes_time.items():
            print(f"{k} : {v:.3f}")

    run_module_via_rpc(
        rpc_config=ARGS.rpc_config,
        lib=rt_mod,
        dev_type=ARGS.target.kind.name,
        args=input_data,
        continuation=f_per_layer,
    )