示例#1
0
def _make_matrices(broadcast, ifm_layout, ifm2_layout, ofm_layout,
                   ofm_channels):
    broadcast_h, broadcast_w, broadcast_c = broadcast
    nhwc_to_nhcwb16, nhcwb16_to_nhwc = get_layout_transform_matrices(
        ofm_channels)
    ifm_matrix = [
        [1, 0, 0, 0, 0],
        [0, 1, 0, 0, 0],
        [0, 0, 1, 0, 0],
        [0, 0, 0, 1, 0],
        [0, 0, 0, 0, 1],
    ]
    ifm2_matrix = [
        [1, 0, 0, 0, 0],
        [0, (1 - broadcast_h), 0, 0, broadcast_h],
        [0, 0, (1 - broadcast_w), 0, broadcast_w],
        [0, 0, 0, (1 - broadcast_c), broadcast_c],
        [0, 0, 0, 0, 1],
    ]
    if ofm_layout == "NHCWB16":
        ifm_matrix = np.matmul(ifm_matrix, nhcwb16_to_nhwc).tolist()
        ifm2_matrix = np.matmul(ifm2_matrix, nhcwb16_to_nhwc).tolist()
    if ifm_layout == "NHCWB16":
        ifm_matrix = np.matmul(nhwc_to_nhcwb16, ifm_matrix).tolist()
    if ifm2_layout == "NHCWB16":
        ifm2_matrix = np.matmul(nhwc_to_nhcwb16, ifm2_matrix).tolist()

    return (ifm_matrix, ifm2_matrix)
示例#2
0
def _make_matrices(ifm_layout, ofm_layout, ofm_channels):
    nhwc_to_nhcwb16, nhcwb16_to_nhwc = get_layout_transform_matrices(ofm_channels)
    ifm_matrix = [
        [1, 0, 0, 0, 0],
        [0, 1, 0, 0, 0],
        [0, 0, 1, 0, 0],
        [0, 0, 0, 1, 0],
        [0, 0, 0, 0, 1],
    ]
    if ofm_layout == "NHCWB16":
        ifm_matrix = np.matmul(ifm_matrix, nhcwb16_to_nhwc).tolist()
    if ifm_layout == "NHCWB16":
        ifm_matrix = np.matmul(nhwc_to_nhcwb16, ifm_matrix).tolist()

    return ifm_matrix
示例#3
0
def test_ethosu_unary_elementwise_matcher(ofm_shape, ifm_layout, ofm_layout, op_type):
    ifm_shape = ofm_shape.copy()
    ofm_channels = ofm_shape[3]
    nhwc_to_nhcwb16, _ = get_layout_transform_matrices(ofm_channels)
    if ifm_layout == "NHCWB16":
        ifm_shape = [
            int(math.ceil(n))
            for n in np.matmul(
                nhwc_to_nhcwb16,
                ifm_shape
                + [
                    1,
                ],
            ).tolist()[:-1]
        ]
    if ofm_layout == "NHCWB16":
        ofm_shape = [
            int(math.ceil(n))
            for n in np.matmul(
                nhwc_to_nhcwb16,
                ofm_shape
                + [
                    1,
                ],
            ).tolist()[:-1]
        ]
        order = [1, 2, 4, 3, 0]
    else:
        order = [1, 2, 3, 4]

    ifm = te.placeholder(ifm_shape, dtype="int8")
    lut = te.placeholder((), dtype="uint8")
    out = unary_elementwise_compute(
        ifm=ifm,
        lut=lut,
        operator_type=op_type,
        ifm_scale=1,
        ifm_zero_point=0,
        ofm_scale=1,
        ofm_zero_point=0,
        ofm_channels=ofm_channels,
        activation="NONE",
        clip_min=0,
        clip_max=0,
        rounding_mode="TFL",
        ifm_layout=ifm_layout,
        ofm_layout=ofm_layout,
    )
    ifm_propagator = out.op.attrs["ifm_propagator"]

    offset = [0] * len(ofm_shape)
    stripes = [0] * len(ofm_shape)
    output_stripe_config = cs.StripeConfig(ofm_shape, ofm_shape, ofm_shape, order, stripes, offset)

    ifm_transform = _make_matrices(ifm_layout, ofm_layout, ofm_channels)

    device_config = cs.EthosuDeviceConfig("ethos-u55-256")
    part = match_ethosu_unary_elementwise(out, device_config)

    assert isinstance(part, cs.EthosuPart)
    assert len(part.propagators) == 1
    assert part.propagators[0].transform == ifm_transform

    propagated_ifm = ifm_propagator.propagate(output_stripe_config).shape

    # The layout transforms that have the exact number of output channels in them
    # will lose no information about the number of channels
    assert ifm_shape == propagated_ifm
示例#4
0
    def make_matrices(
        op_type,
        kernel,
        stride,
        padding,
        ifm_layout,
        ofm_layout,
        dilation=(1, 1),
        ifm_channels=1,
        ofm_channels=1,
    ):
        kernel_h, kernel_w = kernel
        stride_h, stride_w = stride
        dilation_h, dilation_w = dilation
        dilated_kernel_h = (kernel_h - 1) * dilation_h + 1
        dilated_kernel_w = (kernel_w - 1) * dilation_w + 1

        nhwc_to_nhcwb16, nhcwb16_to_nhwc = get_layout_transform_matrices(ofm_channels)

        if op_type == "ethosu_conv2d":
            ifm_matrix = [
                [1, 0, 0, 0, 0],
                [0, stride_h, 0, 0, (dilated_kernel_h - stride_h)],
                [0, 0, stride_w, 0, (dilated_kernel_w - stride_w)],
                [0, 0, 0, 0, ifm_channels],
                [0, 0, 0, 0, 1],
            ]
            weight_matrix = [
                [0, 0, 0, 1, 0],
                [0, 0, 0, 0, kernel_h],
                [0, 0, 0, 0, kernel_w],
                [0, 0, 0, 0, ifm_channels],
                [0, 0, 0, 0, 1],
            ]
        elif op_type == "ethosu_depthwise_conv2d":
            ifm_matrix = [
                [1, 0, 0, 0, 0],
                [0, stride_h, 0, 0, (dilated_kernel_h - stride_h)],
                [0, 0, stride_w, 0, (dilated_kernel_w - stride_w)],
                [0, 0, 0, 1, 0],
                [0, 0, 0, 0, 1],
            ]
            weight_matrix = [
                [0, 0, 0, 1, 0],
                [0, 0, 0, 0, kernel_h],
                [0, 0, 0, 0, kernel_w],
                [0, 0, 0, 0, 1],
                [0, 0, 0, 0, 1],
            ]
        elif op_type == "ethosu_pooling":
            ifm_matrix = [
                [1, 0, 0, 0, 0],
                [0, stride_h, 0, 0, (dilated_kernel_h - stride_h)],
                [0, 0, stride_w, 0, (dilated_kernel_w - stride_w)],
                [0, 0, 0, 1, 0],
                [0, 0, 0, 0, 1],
            ]
            weight_matrix = [
                [0, 0, 0, 0, 0],
                [0, 0, 0, 0, 0],
                [0, 0, 0, 0, 0],
                [0, 0, 0, 0, 0],
                [0, 0, 0, 0, 0],
            ]
        scale_bias_matrix = [
            [0, 0, 0, 1, 0],
            [0, 0, 0, 0, 10],
            [0, 0, 0, 0, 1],
        ]
        if ofm_layout == "NHCWB16":
            ifm_matrix = np.matmul(ifm_matrix, nhcwb16_to_nhwc).tolist()
            weight_matrix = np.matmul(weight_matrix, nhcwb16_to_nhwc).tolist()
            scale_bias_matrix = np.matmul(scale_bias_matrix, nhcwb16_to_nhwc).tolist()
        if ifm_layout == "NHCWB16":
            ifm_matrix = np.matmul(nhwc_to_nhcwb16, ifm_matrix).tolist()

        ifm_offset = (
            [0, -padding[0], -padding[1], 0]
            if ifm_layout == "NHWC"
            else [0, -padding[0], 0, -padding[1], 0]
        )
        weight_offset = [0, 0, 0, 0]
        scale_bias_offset = [0, 0]
        return (
            ifm_matrix,
            ifm_offset,
            weight_matrix,
            weight_offset,
            scale_bias_matrix,
            scale_bias_offset,
        )
示例#5
0
def test_best_block_config(
    test_id,
    op_type,
    activation,
    kernel,
    stride,
    dilation,
    padding,
    in_shape,
    out_shape,
    layouts,
    acc_config,
    expected_block_configs,
):
    ofm_channels = out_shape[3]
    ifm_channels = in_shape[3]

    nhwc_to_nhcwb16, _ = get_layout_transform_matrices(ofm_channels)

    ifm_matrix, ifm_offset, weight_matrix, weight_offset, _, _ = make_matrices(
        op_type,
        kernel,
        stride,
        padding,
        layouts[0],
        layouts[1],
        dilation,
        ifm_channels,
        ofm_channels,
    )

    if layouts[0] == "NHCWB16":
        in_shape = [
            int(math.ceil(n))
            for n in np.matmul(nhwc_to_nhcwb16, in_shape + (1, )).tolist()[:-1]
        ]
    if layouts[1] == "NHCWB16":
        out_shape = [
            int(math.ceil(n)) for n in np.matmul(nhwc_to_nhcwb16, out_shape +
                                                 (1, )).tolist()[:-1]
        ]

    propagator = cs.Propagator(ifm_matrix, ifm_offset)
    weight_propagator = cs.Propagator(weight_matrix, weight_offset)

    subkernels = ((kernel[0] + 7) // 8) * ((kernel[1] + 7) // 8)

    op_attrs = {
        "op": op_type,
        "activation": activation,
        "stride_h": stride[0],
        "stride_w": stride[1],
        "dilation_h": dilation[0],
        "dilation_w": dilation[1],
    }

    device_config = cs.EthosuDeviceConfig(acc_config)
    block_configs = device_config.get_valid_block_configs(
        propagator,
        op_attrs,
        out_shape,
        ofm_channels,
        ifm_channels,
        layouts[1],
        layouts[0],
        "int8",
        "int8",
        kernel[0],
        kernel[1],
    )

    output_quantum = [1, 1, 2, 8]
    if layouts[1] == "NHCWB16":
        output_quantum = [1, 1, 1, 2, 8]

    # Create EthosUPart
    te_subgraph = cs.TESubgraph([], None)
    part = cs.EthosuPart(
        te_subgraph,
        [propagator, weight_propagator],
        output_quantum,
        subkernels,
        block_configs,
        1,
    )
    # Add tensors
    input_tensor = cs.Tensor(in_shape, "int8")
    part.set_input(0, input_tensor)
    if op_type == "ethosu_conv2d":
        weight_tensor = cs.Tensor(
            [ofm_channels, kernel[0], kernel[1], ifm_channels], "int8")
        part.set_input(1, weight_tensor)
    elif op_type == "ethosu_depthwise_conv2d":
        weight_tensor = cs.Tensor([ofm_channels, kernel[0], kernel[1], 1],
                                  "int8")
        part.set_input(1, weight_tensor)

    output_tensor = cs.Tensor(out_shape, "int8")
    part.set_output(output_tensor)

    order = [1, 2, 3, 4] if layouts[1] == "NHCWB16" else [1, 2, 4, 3, 0]
    stripes = [1] * len(output_quantum)
    offset = [0] * len(output_quantum)

    stripe_config = cs.StripeConfig(out_shape, out_shape, out_shape, order,
                                    stripes, offset)

    block = part.get_block_config(stripe_config)
    block_shape = tuple(int(a) for a in block.output_shape)

    assert block_shape in expected_block_configs[test_id]