def test_byoc_microtvm(merge_compiler_regions):
    """This is a simple test to check BYOC capabilities of AOT - with and without merging compiler regions to test for https://github.com/apache/tvm/issues/9036"""
    use_unpacked_api = False
    interface_api = "packed"
    test_runner = AOTTestRunner(pass_config={"tir.usmp.enable": True})

    x = relay.var("x", shape=(10, 10))
    w0 = relay.var("w0", shape=(10, 10))
    w1 = relay.var("w1", shape=(10, 10))

    # z0 = x + w0
    x_ = compiler_begin(x, "ccompiler")
    w0_ = compiler_begin(w0, "ccompiler")
    z0_ = relay.add(x_, w0_)
    z0 = compiler_end(z0_, "ccompiler")

    # z1 = z0 + w1
    z0__ = compiler_begin(z0, "ccompiler")
    w1_ = compiler_begin(w1, "ccompiler")
    z1_ = relay.add(z0__, w1_)
    z1 = compiler_end(z1_, "ccompiler")

    # z2 = z0 + z1
    z2 = relay.add(z0, z1)

    f = relay.Function([x, w0, w1], z2)
    mod = tvm.IRModule()
    mod["main"] = f

    if merge_compiler_regions:
        mod = transform.MergeCompilerRegions()(mod)

    mod = transform.PartitionGraph("mod_name")(mod)
    mod = transform.InferType()(mod)

    x_data = [("x", np.random.rand(10, 10).astype("float32"))]
    w_data = [("w{}".format(i), np.random.rand(10, 10).astype("float32")) for i in range(2)]

    map_inputs = OrderedDict(x_data + w_data)
    output_list = generate_ref_data(mod, map_inputs)

    compiled_test_mods = compile_models(
        AOTTestModel(name="my_mod", module=mod, inputs=map_inputs, outputs=output_list),
        interface_api=interface_api,
        use_unpacked_api=use_unpacked_api,
        pass_config=test_runner.pass_config,
    )

    for compiled_model in compiled_test_mods:
        check_for_no_tvm_backendallocworkspace_calls(compiled_model.executor_factory.lib)

    run_and_check(
        models=compiled_test_mods,
        runner=test_runner,
        interface_api=interface_api,
    )
示例#2
0
def test_byoc_microtvm(merge_compiler_regions):
    """
    This is a simple test to check BYOC capabilities of AOT
    with and without merging compiler regions to test for https://github.com/apache/tvm/issues/9036
    """
    use_unpacked_api = False
    interface_api = "packed"
    test_runner = AOT_DEFAULT_RUNNER

    input_x = relay.var("x", shape=(10, 10))
    input_w0 = relay.var("w0", shape=(10, 10))
    input_w1 = relay.var("w1", shape=(10, 10))

    # z0 = x + w0
    marked_input_x = compiler_begin(input_x, "ccompiler")
    marked_input_w0 = compiler_begin(input_w0, "ccompiler")
    add_x_and_w0 = relay.add(marked_input_x, marked_input_w0)
    end_inner_add = compiler_end(add_x_and_w0, "ccompiler")

    # z1 = z0 + w1
    marked_inner_add = compiler_begin(end_inner_add, "ccompiler")
    marked_w1 = compiler_begin(input_w1, "ccompiler")
    add_nested_and_w1 = relay.add(marked_inner_add, marked_w1)
    end_outer_add = compiler_end(add_nested_and_w1, "ccompiler")

    # z2 = z0 + z1
    final_add = relay.add(end_inner_add, end_outer_add)

    relay_func = relay.Function([input_x, input_w0, input_w1], final_add)
    mod = tvm.IRModule()
    mod["main"] = relay_func

    if merge_compiler_regions:
        mod = transform.MergeCompilerRegions()(mod)

    mod = transform.PartitionGraph("mod_name")(mod)
    mod = transform.InferType()(mod)

    x_data = [("x", np.random.rand(10, 10).astype("float32"))]
    w_data = [("w{}".format(i), np.random.rand(10, 10).astype("float32"))
              for i in range(2)]

    map_inputs = OrderedDict(x_data + w_data)
    output_list = generate_ref_data(mod, map_inputs)
    compile_and_run(
        AOTTestModel(name="my_mod",
                     module=mod,
                     inputs=map_inputs,
                     outputs=output_list),
        test_runner,
        interface_api,
        use_unpacked_api,
    )
def test_region_set_creator_diamond():
    data = relay.var('data', shape=(10, 10))
    cb_1 = compiler_begin(data, 'test_target')
    O_1 = relay.abs(cb_1)
    ce_1 = compiler_end(O_1, 'test_target')
    ce_2 = compiler_end(O_1, 'test_target')
    cb_2 = compiler_begin(ce_1, 'test_target')
    O_2 = relay.nn.relu(cb_2)
    ce_3 = compiler_end(O_2, 'test_target')
    cb_d = compiler_begin(ce_2, "default")
    X = relay.tanh(cb_d)
    ce_d = compiler_end(X, 'default')
    cb_3 = compiler_begin(ce_3, 'test_target')
    cb_4 = compiler_begin(ce_d, 'test_target')
    O_3 = relay.add(cb_3, cb_4)
    ce_4 = compiler_end(O_3, 'test_target')
    diamond = relay.Function([data], ce_4)

    region_set = relay.analysis.AnnotatedRegionSet(
        diamond, relay.op.get("annotation.compiler_begin"),
        relay.op.get("annotation.compiler_end"))
    assert len(region_set) == 4
    check_region(
        region_set,
        'test_target',
        [cb_1],
        [cb_1, O_1, ce_1, ce_2],
        [ce_1, ce_2],
    )
    check_region(
        region_set,
        'test_target',
        [cb_2],
        [cb_2, O_2, ce_3],
        [ce_3],
    )
    check_region(
        region_set,
        'default',
        [cb_d],
        [cb_d, X, ce_d],
        [ce_d],
    )
    check_region(
        region_set,
        'test_target',
        [cb_3, cb_4],
        [cb_3, cb_4, O_3, ce_4],
        [ce_4],
    )
示例#4
0
def test_byoc_microtvm(merge_compiler_regions):
    """This is a simple test to check BYOC capabilities of AOT - with and without merging compiler regions to test for https://github.com/apache/tvm/issues/9036"""
    use_unpacked_api = False
    interface_api = "packed"
    test_runner = AOT_DEFAULT_RUNNER

    x = relay.var("x", shape=(10, 10))
    w0 = relay.var("w0", shape=(10, 10))
    w1 = relay.var("w1", shape=(10, 10))

    # z0 = x + w0
    x_ = compiler_begin(x, "ccompiler")
    w0_ = compiler_begin(w0, "ccompiler")
    z0_ = relay.add(x_, w0_)
    z0 = compiler_end(z0_, "ccompiler")

    # z1 = z0 + w1
    z0__ = compiler_begin(z0, "ccompiler")
    w1_ = compiler_begin(w1, "ccompiler")
    z1_ = relay.add(z0__, w1_)
    z1 = compiler_end(z1_, "ccompiler")

    # z2 = z0 + z1
    z2 = relay.add(z0, z1)

    f = relay.Function([x, w0, w1], z2)
    mod = tvm.IRModule()
    mod["main"] = f

    if merge_compiler_regions:
        mod = transform.MergeCompilerRegions()(mod)

    mod = transform.PartitionGraph("mod_name")(mod)
    mod = transform.InferType()(mod)

    x_data = [("x", np.random.rand(10, 10).astype("float32"))]
    w_data = [("w{}".format(i), np.random.rand(10, 10).astype("float32"))
              for i in range(2)]

    map_inputs = OrderedDict(x_data + w_data)
    output_list = generate_ref_data(mod, map_inputs)
    compile_and_run(
        AOTTestModel(name="my_mod",
                     module=mod,
                     inputs=map_inputs,
                     outputs=output_list),
        test_runner,
        interface_api,
        use_unpacked_api,
    )
 def visit_call(self, call):
     new_args = []
     for arg in call.args:
         ann = compiler_begin(self.visit(arg), "ccompiler")
         new_args.append(ann)
     new_call = relay.Call(call.op, new_args)
     return compiler_end(new_call, "ccompiler")
    def expected():
        data = relay.var('data', shape=(10, 10))
        cb_1 = compiler_begin(data, "test")
        O_1 = relay.abs(cb_1)
        ce_2 = compiler_end(O_1, "test")
        O_2 = relay.nn.relu(O_1)
        ce_3 = compiler_end(O_2, "test")

        X = relay.tanh(ce_2)

        cb_3 = compiler_begin(ce_3, "test")
        cb_4 = compiler_begin(X, "test")
        O_3 = relay.add(cb_3, cb_4)
        ce_4 = compiler_end(O_3, "test")

        func = relay.Function([data], ce_4)
        return func
    def create_graph():
        data = relay.var('data', shape=(10, 10))

        cb_1 = compiler_begin(data, 'test_target')
        O_1 = relay.abs(cb_1)
        ce_2 = compiler_end(O_1, 'test_target')
        O_2 = relay.nn.relu(O_1)
        ce_3 = compiler_end(O_2, 'test_target')

        X = relay.tanh(ce_2)

        cb_3 = compiler_begin(ce_3, 'test_target')
        cb_4 = compiler_begin(X, 'test_target')
        O_3 = relay.add(cb_3, cb_4)
        ce_4 = compiler_end(O_3, 'test_target')

        func = relay.Function([data], ce_4)
        return func
示例#8
0
文件: vitis_ai.py 项目: jiajuns/tvm
 def visit_tuple_getitem(self, op):
     """Add compiler_begin and compiler_end annotations to TupleGetItem"""
     if int(hash(op.tuple_value)) in annotator.relay_ids:
         tuple_value = compiler_begin(super().visit(op.tuple_value),
                                      annotator.compiler)
         return compiler_end(TupleGetItem(tuple_value, op.index),
                             annotator.compiler)
     else:
         tuple_value = super().visit(op.tuple_value)
         return TupleGetItem(tuple_value, op.index)
示例#9
0
def test_region_set_creator_merged():
    data = relay.var("data", shape=(10, 10))
    cb_1 = compiler_begin(data, "test_target")
    O_1 = relay.abs(cb_1)
    ce_2 = compiler_end(O_1, "test_target")
    O_2 = relay.nn.relu(O_1)
    ce_3 = compiler_end(O_2, "test_target")
    cb_d = compiler_begin(ce_2, "default")
    X = relay.tanh(cb_d)
    ce_d = compiler_end(X, "default")
    cb_3 = compiler_begin(ce_3, "test_target")
    cb_4 = compiler_begin(ce_d, "test_target")
    O_3 = relay.add(cb_3, cb_4)
    O_4 = relay.add(cb_3, cb_4)
    O_5 = relay.Tuple([O_3, O_4])
    ce_4 = compiler_end(O_5, "test_target")
    merged = relay.Function([data], ce_4)

    region_set = relay.analysis.AnnotatedRegionSet(
        merged, relay.op.get("annotation.compiler_begin"),
        relay.op.get("annotation.compiler_end"))
    assert len(region_set) == 3
    check_region(
        region_set,
        "test_target",
        [cb_1],
        [cb_1, O_1, O_2, ce_2, ce_3],
        [ce_2, ce_3],
    )
    check_region(
        region_set,
        "default",
        [cb_d],
        [cb_d, X, ce_d],
        [ce_d],
    )
    check_region(
        region_set,
        "test_target",
        [cb_3, cb_4],
        [cb_3, cb_4, O_3, O_4, O_5, ce_4],
        [ce_4],
    )
    def diamond_graph_fanouts():
        data = relay.var('data', shape=(10, 10))
        cb_1 = compiler_begin(data, "test")
        O_1 = relay.abs(cb_1)
        ce_1 = compiler_end(O_1, "test")
        ce_2 = compiler_end(O_1, "test")
        cb_2 = compiler_begin(ce_1, "test")
        O_2 = relay.nn.relu(cb_2)
        ce_3 = compiler_end(O_2, "test")

        X = relay.tanh(ce_2)

        cb_3 = compiler_begin(ce_3, "test")
        cb_4 = compiler_begin(X, "test")
        O_3 = relay.add(cb_3, cb_4)
        ce_4 = compiler_end(O_3, "test")

        diamond = relay.Function([data], ce_4)
        return diamond
 def visit_call(self, call):
     op_name = call.op.name
     if op_name in annotator.op_list:
         new_args = []
         for arg in call.args:
             ann = compiler_begin(super().visit(arg), annotator.compiler)
             new_args.append(ann)
         new_call = relay.Call(call.op, new_args, call.attrs, call.type_args)
         return compiler_end(new_call, annotator.compiler)
     else:
         return super().visit_call(call)
    def expected():
        in_1 = relay.var('in_1', shape=(10, 10), dtype='float32')
        in_2 = relay.var('in_2', shape=(10, 10), dtype='float32')
        in_3 = relay.var('in_3', shape=(10, 10), dtype='float32')
        in_4 = relay.var('in_4', shape=(10, 10), dtype='float32')
        in_5 = relay.var('in_5', shape=(10, 10), dtype='float32')
        in_6 = relay.var('in_6', shape=(10, 10), dtype='float32')
        in_7 = relay.var('in_7', shape=(10, 10), dtype='float32')
        in_8 = relay.var('in_8', shape=(10, 10), dtype='float32')
        in_9 = relay.var('in_9', shape=(10, 10), dtype='float32')
        in_10 = relay.var('in_10', shape=(10, 10), dtype='float32')

        begin0 = compiler_begin(in_1, "test")
        begin1 = compiler_begin(in_2, "test")
        begin2 = compiler_begin(in_3, "test")
        begin3 = compiler_begin(in_4, "test")
        node0 = relay.add(begin0, begin1)
        node1 = relay.add(begin2, begin3)
        node2 = relay.add(node0, node1)

        node3 = relay.subtract(in_5, in_6)
        node4 = relay.subtract(in_7, node3)

        begin4 = compiler_begin(node4, "test")
        begin5 = compiler_begin(in_9, "test")
        node5 = relay.add(node2, begin4)
        end1 = compiler_end(node5, "test")

        node6 = relay.subtract(in_8, end1)

        node7 = relay.add(begin5, node5)
        end2 = compiler_end(node7, "test")
        begin6 = compiler_begin(end2, "test")
        begin7 = compiler_begin(node6, "test")

        node8 = relay.add(begin7, begin6)

        begin8 = compiler_begin(in_10, "test")
        node9 = relay.add(begin8, node8)
        end3 = compiler_end(node9, "test")

        f = relay.Function(
            [in_1, in_2, in_3, in_4, in_5, in_6, in_7, in_8, in_9, in_10],
            end3)
        mod = tvm.IRModule.from_expr(f)
        return mod
示例#13
0
def test_load_params_with_constants_in_ext_codegen():
    # After binding params and partitioning graph_module.get_params()
    # might contain parameters that are not an graph runtime input but
    # for example constants in external function.
    y_in = np.ones((1,)).astype("float32")
    params = {"y": y_in}
    mod = tvm.IRModule()
    x = relay.var("x", shape=(1, 10))
    y = relay.var("y", shape=(1,))
    xcb = compiler_begin(x, "ccompiler")
    ycb = compiler_begin(y, "ccompiler")
    z = relay.add(xcb, ycb)
    zce = compiler_end(z, "ccompiler")
    mod["main"] = relay.Function([x, y], zce)
    mod["main"] = bind_params_by_name(mod["main"], params)
    mod = transform.PartitionGraph()(mod)

    graph_module = relay.build(mod, target="llvm", params=params)
    lib = update_lib(graph_module.get_lib())
    rt_mod = tvm.contrib.graph_runtime.create(graph_module.get_json(), lib, tvm.cpu(0))
    rt_mod.load_params(runtime.save_param_dict(graph_module.get_params()))
示例#14
0
文件: libtorch.py 项目: wenxcs/tvm
def torchop(script_fn, *params):
    """Insert an Operation executed in the PyTorch JIT

    The operation includes backend annotation

    Currently, only tensors are supported. The shape inferrence
    assumes that input shapes (and not values) determine output shapes."""
    return compiler_end(
        relay.op._make.torchop([compiler_begin(p, "torch") for p in params],
                               script_fn.save_to_buffer()),
        "torch",
    )
    def create_graph():
        data = relay.var("data", relay.TensorType((1, 3, 224, 224), "float32"))
        weight = relay.var("weight", relay.TensorType((16, 3, 3, 3), "float32"))
        bn_gamma = relay.var("bn_gamma", relay.TensorType((16,), "float32"))
        bn_beta = relay.var("bn_beta", relay.TensorType((16,), "float32"))
        bn_mean = relay.var("bn_mean", relay.TensorType((16,), "float32"))
        bn_var = relay.var("bn_var", relay.TensorType((16,), "float32"))

        data_cb = compiler_begin(data, "test_target")
        weight_cb = compiler_begin(weight, "test_target")
        bn_gamma_cb = compiler_begin(bn_gamma, "test_target")
        bn_beta_cb = compiler_begin(bn_beta, "test_target")
        bn_mean_cb = compiler_begin(bn_mean, "test_target")
        bn_var_cb = compiler_begin(bn_var, "test_target")

        conv_o = relay.nn.conv2d(
            data=data_cb, weight=weight_cb, kernel_size=(3, 3), channels=16, padding=(1, 1)
        )

        bn_o = relay.nn.batch_norm(conv_o, bn_gamma_cb, bn_beta_cb, bn_mean_cb, bn_var_cb)

        relu_o = relay.nn.relu(bn_o[0])
        relu_o_ce = compiler_end(relu_o, "test_target")

        bn_omean = bn_o[1]
        rebn_omean_ce = compiler_end(bn_omean, "test_target")
        bn_ovar = bn_o[2]
        bn_ovar_ce = compiler_end(bn_ovar, "test_target")

        dummy_mean_abs = relay.abs(rebn_omean_ce)
        dummy_ovar_abs = relay.abs(bn_ovar_ce)
        dummy_tuple = relay.Tuple((relu_o_ce, dummy_mean_abs, dummy_ovar_abs))

        func = relay.Function([data, weight, bn_gamma, bn_beta, bn_mean, bn_var], dummy_tuple)
        return func
 def visit_call(self, call):
     if call.op.name == "add":  # Annotate begin at args
         if self.in_compiler == 1:
             lhs = compiler_begin(super().visit(call.args[0]), "ccompiler")
             rhs = compiler_begin(super().visit(call.args[1]), "ccompiler")
             op = relay.add(lhs, rhs)
             self.in_compiler = 2
             return op
     elif call.op.name == "subtract":
         if self.in_compiler == 1:
             lhs = super().visit(call.args[0])
             rhs = super().visit(call.args[1])
             if isinstance(lhs, relay.expr.Var):
                 lhs = compiler_begin(lhs, "ccompiler")
             if isinstance(rhs, relay.expr.Var):
                 rhs = compiler_begin(rhs, "ccompiler")
             return relay.subtract(lhs, rhs)
     elif call.op.name == "multiply":  # Annotate end at output
         self.in_compiler = 1
         lhs = super().visit(call.args[0])
         rhs = super().visit(call.args[1])
         if isinstance(lhs, relay.expr.Var):
             lhs = compiler_begin(lhs, "ccompiler")
         if isinstance(rhs, relay.expr.Var):
             rhs = compiler_begin(rhs, "ccompiler")
         op = relay.multiply(lhs, rhs)
         if self.in_compiler == 2:
             op = compiler_end(op, "ccompiler")
         self.in_compiler = 0
         return op
     return super().visit_call(call)
示例#17
0
文件: vitis_ai.py 项目: jiajuns/tvm
            def visit_call(self, call):
                """Add compiler_begin and compiler_end annotations to the Call expr"""
                if int(hash(call)) in annotator.relay_ids:
                    new_args = []
                    for arg in call.args:
                        ann = compiler_begin(super().visit(arg),
                                             annotator.compiler)
                        new_args.append(ann)
                    new_call = relay.Call(call.op, new_args, call.attrs,
                                          call.type_args)
                    return compiler_end(new_call, annotator.compiler)

                else:
                    return super().visit_call(call)
示例#18
0
    def visit_call(self, call):
        curr_last = self.last_call
        self.last_call = False

        params = []
        for arg in call.args:
            param = super().visit(arg)
            if isinstance(param, relay.expr.Var):
                param = compiler_begin(param, self.compiler)
            params.append(param)

        new_call = relay.Call(call.op, params, call.attrs)
        if curr_last:
            new_call = compiler_end(new_call, self.compiler)
        return new_call
示例#19
0
文件: vitis_ai.py 项目: jiajuns/tvm
 def visit_tuple(self, tup):
     """Add compiler_begin and compiler_end annotations to Tuple"""
     field_list = []
     cond = int(hash(tup))
     for field in tup.fields:
         if cond in annotator.relay_ids:
             field_list.append(
                 compiler_begin(super().visit(field),
                                annotator.compiler))
         else:
             field_list.append(super().visit(field))
     if cond in annotator.relay_ids:
         return compiler_end(Tuple(field_list), annotator.compiler)
     else:
         return Tuple(field_list)
    def visit_call(self, call):

        if call.op.name == 'nn.global_avg_pool2d':
            self.compiler_open = True
        compiler_open = self.compiler_open

        params = []
        for arg in call.args:
            param = super().visit(arg)
            if call.op.name == 'nn.global_avg_pool2d':
                param = compiler_end(param, self.compiler)
            if compiler_open and isinstance(param, relay.expr.Var):
                param = compiler_begin(param, self.compiler)
            params.append(param)

        new_call = relay.Call(call.op, params, call.attrs)
        return new_call
示例#21
0
 def visit_constant(self, constant):
     new_constant = compiler_begin(constant, self.compiler)
     return new_constant
示例#22
0
def test_partition():
    in_1 = relay.var("in_1", shape=(10, 10), dtype="float32")
    in_2 = relay.var("in_2", shape=(10, 10), dtype="float32")
    in_3 = relay.var("in_3", shape=(10, 10), dtype="float32")
    in_4 = relay.var("in_4", shape=(10, 10), dtype="float32")
    in_5 = relay.var("in_5", shape=(10, 10), dtype="float32")
    in_6 = relay.var("in_6", shape=(10, 10), dtype="float32")
    in_7 = relay.var("in_7", shape=(10, 10), dtype="float32")
    in_8 = relay.var("in_8", shape=(10, 10), dtype="float32")
    in_9 = relay.var("in_9", shape=(10, 10), dtype="float32")
    in_10 = relay.var("in_10", shape=(10, 10), dtype="float32")

    begin0 = compiler_begin(in_1, "onnx")
    begin1 = compiler_begin(in_2, "onnx")
    begin2 = compiler_begin(in_3, "onnx")
    begin3 = compiler_begin(in_4, "onnx")
    node0 = relay.add(begin0, begin1)
    node1 = relay.add(begin2, begin3)
    end0 = compiler_end(node0, "onnx")
    end1 = compiler_end(node1, "onnx")
    begin4 = compiler_begin(end0, "onnx")
    begin5 = compiler_begin(end1, "onnx")
    node2 = relay.add(begin4, begin5)
    end2 = compiler_end(node2, "onnx")

    dbegin0 = compiler_begin(in_5, "default")
    dbegin1 = compiler_begin(in_6, "default")
    node3 = relay.subtract(dbegin0, dbegin1)
    dbegin2 = compiler_begin(in_7, "default")
    dend1 = compiler_end(node3, "default")
    dbegin3 = compiler_begin(dend1, "default")
    node4 = relay.subtract(dbegin2, dbegin3)
    dend2 = compiler_end(node4, "default")

    begin6 = compiler_begin(end2, "onnx")
    begin7 = compiler_begin(dend2, "onnx")
    node5 = relay.add(begin6, begin7)
    end3 = compiler_end(node5, "onnx")
    end4 = compiler_end(node5, "onnx")
    dbegin4 = compiler_begin(in_8, "default")
    dbegin5 = compiler_begin(end3, "default")
    node6 = relay.subtract(dbegin4, dbegin5)
    begin8 = compiler_begin(in_9, "onnx")
    begin9 = compiler_begin(end4, "onnx")
    node7 = relay.multiply(begin8, begin9)
    end5 = compiler_end(node7, "onnx")

    dend3 = compiler_end(node6, "default")
    begin10 = compiler_begin(dend3, "onnx")
    begin11 = compiler_begin(end5, "onnx")
    node8 = relay.add(begin10, begin11)
    end6 = compiler_end(node8, "onnx")
    begin12 = compiler_begin(in_10, "onnx")
    begin13 = compiler_begin(end6, "onnx")
    node9 = relay.add(begin12, begin13)
    end7 = compiler_end(node9, "onnx")

    func = relay.Function(
        [in_1, in_2, in_3, in_4, in_5, in_6, in_7, in_8, in_9, in_10], end7)

    target = "llvm"
    mod = IRModule.from_expr(func)
    mod = transform.PartitionGraph()(mod)

    with tvm.transform.PassContext(opt_level=3, disabled_pass=["FuseOps"]):
        graph_json, mod1, params = relay.build(mod, target)

    assert mod1.type_key == "metadata"
    assert mod1.imported_modules[0].type_key == "llvm"
    assert mod1.imported_modules[0].get_source()
    assert mod1.imported_modules[1].type_key == "onnx"
    assert mod1.imported_modules[1].get_source()
    def annotated():
        in_1 = relay.var("in_1", shape=(10, 10), dtype="float32")
        in_2 = relay.var("in_2", shape=(10, 10), dtype="float32")
        in_3 = relay.var("in_3", shape=(10, 10), dtype="float32")
        in_4 = relay.var("in_4", shape=(10, 10), dtype="float32")
        in_5 = relay.var("in_5", shape=(10, 10), dtype="float32")
        in_6 = relay.var("in_6", shape=(10, 10), dtype="float32")
        in_7 = relay.var("in_7", shape=(10, 10), dtype="float32")
        in_8 = relay.var("in_8", shape=(10, 10), dtype="float32")
        in_9 = relay.var("in_9", shape=(10, 10), dtype="float32")
        in_10 = relay.var("in_10", shape=(10, 10), dtype="float32")

        begin0 = compiler_begin(in_1, "test")
        begin1 = compiler_begin(in_2, "test")
        begin2 = compiler_begin(in_3, "test")
        begin3 = compiler_begin(in_4, "test")
        node0 = relay.add(begin0, begin1)
        node1 = relay.add(begin2, begin3)
        end0 = compiler_end(node0, "test")
        end1 = compiler_end(node1, "test")
        begin4 = compiler_begin(end0, "test")
        begin5 = compiler_begin(end1, "test")
        node2 = relay.add(begin4, begin5)
        end2 = compiler_end(node2, "test")

        dbegin0 = compiler_begin(in_5, "default")
        dbegin1 = compiler_begin(in_6, "default")
        node3 = relay.subtract(dbegin0, dbegin1)
        dbegin2 = compiler_begin(in_7, "default")
        dend1 = compiler_end(node3, "default")
        dbegin3 = compiler_begin(dend1, "default")
        node4 = relay.subtract(dbegin2, dbegin3)
        dend2 = compiler_end(node4, "default")

        begin6 = compiler_begin(end2, "test")
        begin7 = compiler_begin(dend2, "test")
        node5 = relay.add(begin6, begin7)
        end3 = compiler_end(node5, "test")
        end4 = compiler_end(node5, "test")
        dbegin4 = compiler_begin(in_8, "default")
        dbegin5 = compiler_begin(end3, "default")
        node6 = relay.subtract(dbegin4, dbegin5)
        begin8 = compiler_begin(in_9, "test")
        begin9 = compiler_begin(end4, "test")
        node7 = relay.add(begin8, begin9)
        end5 = compiler_end(node7, "test")

        dend3 = compiler_end(node6, "default")
        begin10 = compiler_begin(dend3, "test")
        begin11 = compiler_begin(end5, "test")
        node8 = relay.add(begin10, begin11)
        end6 = compiler_end(node8, "test")
        begin12 = compiler_begin(in_10, "test")
        begin13 = compiler_begin(end6, "test")
        node9 = relay.add(begin12, begin13)
        end7 = compiler_end(node9, "test")

        f = relay.Function(
            [in_1, in_2, in_3, in_4, in_5, in_6, in_7, in_8, in_9, in_10],
            end7)
        mod = tvm.IRModule.from_expr(f)
        return mod